Phytonanotechnological Approach for Silver Nanoparticles: Mechanistic Aspect, Properties, and Reliable Heavy Metal Ion Sensing

  • Chapter
  • First Online:
Phytonanotechnology

Abstract

The environmentally benign and reliable methods for the nanoparticles (NPs) synthesis are playing significant role in the area of nanotechnology. The traditional methods of silver nanoparticles (AgNPs) synthesis are costly, hazardous, and non-eco-friendly. The phytonanotechnology is the alternative method to tackle these problems which includes NPs synthesis using natural sources like plants, fungi, bacteria, and biopolymers as presence of various phytochemicals acting as stabilizing along with cap** agents. AgNPs are widely used in the sensing field for the detection of toxic heavy metal ions like mercury (Hg2+), lead (Pb2+), zinc (Zn2+), cadmium (Cd2+), arsenic (As2+), copper (Cu2+) etc. with very low detection limits. The present chapter lights on the green and mechanistic approach towards the synthesis of plant-based AgNPs, its properties, and heavy metal ion sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aadil KR, Pandey N, Mussatto SI, Jha H (2019) Green synthesis of silver nanoparticles using Acacia Lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. J Environ Chem Eng 7(5):103296. https://doi.org/10.1016/j.jece.2019.103296

    Article  CAS  Google Scholar 

  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, Alkhulaifi MM (2019) Biosynthesis of silver nanoparticles by using of the marine brown alga padina pavonia and their characterization. Saudi J Biol Sci 26(6):1207–15.

    Article  CAS  Google Scholar 

  • Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P (2014) Biogenic nano-scale silver particles by Tephrosia Purpurea leaf extract and their inborn antimicrobial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 121:164–172. https://doi.org/10.1016/j.saa.2013.10.077

  • Al-Dhafri K, Ching CL (2019) Phyto-synthesis of silver nanoparticles and its bioactivity response towards nosocomial bacterial pathogens. Biocatal Agric Biotechnol 18:101075. https://doi.org/10.1016/j.bcab.2019.101075

    Article  Google Scholar 

  • Alzahrani E (2020) Colorimetric detection based on localized surface plasmon resonance optical characteristics for sensing of Mercury using green-synthesized silver nanoparticles. J Anal Methods Chem 2020: 6026312. https://doi.org/10.1155/2020/6026312

  • Annadhasan M, Muthukumarasamyvel T, Sankar Babu VR, Rajendiran N (2014) Green synthesized Silver and Gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain Chem Eng 2(4):887–896

    Article  CAS  Google Scholar 

  • Ansari MA, Alzohairy MA (2018) One-pot facile green synthesis of Silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA. Evid Based Complement Altern Med ECAM 2018:1860280. https://doi.org/10.1155/2018/1860280

    Article  Google Scholar 

  • Anthony SP (2012) Organic solid-state fluorescence: strategies for generating switchable and tunable fluorescent materials. ChemPlusChem 77(7):518–531. https://doi.org/10.1002/cplu.201200073

    Article  CAS  Google Scholar 

  • Anuj S, Ishnava K (2013) Plant mediated synthesis of Silver nanoparticles by using dried stem powder of Tinospora cordifolia, its antibacterial activity and comparison with antibiotics. Int J Pharm Bio Sci 4:849–863

    CAS  Google Scholar 

  • Aravind A, Sebastian M, Mathew B (2018) Green synthesized unmodified Silver nanoparticles as a multi-sensor for Cr(III) ions. Environ Sci Water Res Technol 4(10):1531–1542. https://doi.org/10.1039/C8EW00374B

    Article  CAS  Google Scholar 

  • Aswathy Aromal S, Philip D (2012) Green synthesis of Gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 97:1–5. https://doi.org/10.1016/j.saa.2012.05.083

    Article  CAS  Google Scholar 

  • Bindhu MR, Umadevi M (2014) Silver and Gold nanoparticles for sensor and antibacterial applications. Spectrochim Acta Part A Mol Biomol Spectrosc 128:37–45. https://doi.org/10.1016/j.saa.2014.02.119

    Article  CAS  Google Scholar 

  • Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of Silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:796018. https://doi.org/10.1155/2013/796018

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly supramolecular chemistry quantum-size-related properties and applications toward biology catalysis and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698

    Article  CAS  Google Scholar 

  • Deepak P, Amutha V, Birundha R, Sowmiya R, Kamaraj C, Velramar B, Govindasamy B, Aiswarya D, Dhayalan A, Perumal P (2018) Facile Green synthesis of nanoparticles from brown seaweed Sargassum wightii and its biological application potential. Adv Nat Sci Nanosci Nanotechnol 9. https://doi.org/10.1088/2043-6254/aadc4a

  • Durairaj K, Anthony S (2013) Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide PH range. RSC Adv 3(37):16765–16774. https://doi.org/10.1039/c3ra42308e

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of Silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8. https://doi.org/10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of Silver and Gold nanoparticles using Chenopodium album leaf extract. Colloids Surf, A 369(1):27–33. https://doi.org/10.1016/j.colsurfa.2010.07.020

    Article  CAS  Google Scholar 

  • Faghri Zonooz N, Salouti M (2011) Extracellular biosynthesis of Silver nanoparticles using cell filtrate of Streptomyces Sp. ERI-3. Sci Iranica 18(6):1631–1635. https://doi.org/10.1016/j.scient.2011.11.029

    Article  CAS  Google Scholar 

  • Farooqui MDA, Chauhan PS, Krishnamoorthy P, Shaik J (2010) Extraction of Silver nanoparticles from the leaf extracts of Clerodendrum inerme. Dig J Nano Biostruct 5:43–49

    Google Scholar 

  • Gade AK, Gaikwad SC, Tiwari V, Yadav A, Ingle AP, Rai M (2010) Biofabrication of Silver nanoparticles by Opuntia ficus-indica. In vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr Nanosci 6:370–375

    Article  CAS  Google Scholar 

  • Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline Silver nanoparticles from Bacillus cereus isolate. Colloids Surf, B 74(1):191–195. https://doi.org/10.1016/j.colsurfb.2009.07.016

    Article  CAS  Google Scholar 

  • Geethalakshmi R, Dronamraju Sarada VL (2018) In vitro and in silico antimicrobial activity of sterol and flavonoid isolated from Trianthema decandra L. Microb Pathog 121:77–86. https://doi.org/10.1016/j.micpath.2018.05.018

    Article  CAS  Google Scholar 

  • Gil-Sánchez I, Monge M, Miralles B, Armentia G, Cueva C, Crespo J, de Luzuriaga JML et al. (2019) Some new findings on the potential use of biocompatible silver nanoparticles in winemaking. Innov Food Sci Technol Span Natl Res Counc (CSIC) 51 (January): 64–72. https://doi.org/10.1016/j.ifset.2018.04.017

    Article  CAS  Google Scholar 

  • Gopinath V, Mubarak Ali D, Priyadarshini S, MeeraPriyadharsshini N, Thajuddin N, Velusamy P (2012) Biosynthesis of Silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf, B. https://doi.org/10.1016/j.colsurfb.2012.03.023

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of Silver nanoparticles using Escherichia coli. Colloids Surf, B 74(1):328–335. https://doi.org/10.1016/j.colsurfb.2009.07.048

    Article  CAS  Google Scholar 

  • Honary S, Barabadi H, Gharaei E, Naghibi F (2013) Green synthesis of Silver nanoparticles induced by the Fungus Penicillium Citrinum. Trop J Pharm Res 12:7–11. https://doi.org/10.4314/tjpr.v12i1.2

  • Ingle A, Rai M, Gade A, Bawaskar M (2008) Fusarium Solani: a novel biological agent for the extracellular synthesis of Silver nanoparticles. J Nanopart Res 11(8):2079. https://doi.org/10.1007/s11051-008-9573-y

    Article  CAS  Google Scholar 

  • Jagtap UB, Bapat VA (2013) Green synthesis of Silver nanoparticles using Artocarpus heterophyllus lam. seed extract and its antibacterial activity. Ind Crops Prod 46:132–137. https://doi.org/10.1016/j.indcrop.2013.01.019

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of Silver and Gold nanoparticles using Brevibacterium casei. Colloids Surf, B 77(2):257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007

    Article  CAS  Google Scholar 

  • Karuppiah M, Rajmohan R (2013) Green synthesis of Silver nanoparticles using Ixora coccinea leaves extract. Mater Lett 97:141–143. https://doi.org/10.1016/j.matlet.2013.01.087

    Article  CAS  Google Scholar 

  • Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D (2014) Green synthesis of Silver nanoparticles using Olive leaf extract and its antibacterial activity. Arab J Chem 7(6):1131–1139. https://doi.org/10.1016/j.arabjc.2013.04.007

    Article  CAS  Google Scholar 

  • Khari L, Kumar (2018) Review on a weed Parthenium hysterophorus (L.). Int J Current Res Rev 10:23–32. https://doi.org/10.31782/IJCRR.2018.10175

  • Kirubaharan C, Joseph DK, Lee YS, Kim AR, Yoo DJ, Nahm KS, Gnana Kumar G (2012) Biomediated Silver nanoparticles for the highly selective Copper(II) ion sensor applications. Ind Eng Chem Res 51(21):7441–7446. https://doi.org/10.1021/ie3003232

    Article  CAS  Google Scholar 

  • Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of Gum Olibanum (Boswellia Serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520. https://doi.org/10.1016/J.PROCBIO.2012.06.004

    Article  CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm J 24(4):473–484. https://doi.org/10.1016/j.jsps.2014.11.013

    Article  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974. https://doi.org/10.1155/2011/270974

  • Ma L, Su W, Liu J-X, Zeng X-X, Huang Z, Li W, Liu Z-C, Tang J-X (2017) Optimization for extracellular biosynthesis of Silver nanoparticles by Penicillium Aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with Silver ions. Mater Sci Eng, C 77:963–971. https://doi.org/10.1016/j.msec.2017.03.294

    Article  CAS  Google Scholar 

  • Mane-Gavade S, Nikam G, Dhabbe R, Sabale S, Tamhankar BV, Mulik G (2015) Green synthesis of Silver nanoparticles by using Carambola fruit extract and their antibacterial activity. Adv Nat Sci Nanosci Nanotechnol 6:045015. https://doi.org/10.1088/2043-6262/6/4/045015

  • Manivel P, Ilanchelian M (2017) Selective and sensitive colorimetric detection of Hg2+ at wide PH range using green synthesized Silver nanoparticles as probe. J Cluster Sci 28(3):1145–1162. https://doi.org/10.1007/s10876-016-1109-5

    Article  CAS  Google Scholar 

  • Mehta VN, Rohit JV, Kailasa SK (2016) Functionalization of Silver nanoparticles with 5-Sulfoanthranilic acid dithiocarbamate for selective colorimetric detection of Mn2+ and Cd2+ ions. New J Chem 40(5):4566–4574. https://doi.org/10.1039/C5NJ03454J

    Article  CAS  Google Scholar 

  • Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV (2018) Silver nanoparticles synthesized by using the endophytic bacterium Pantoea Ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules (basel, Switzerland) 23(12):3220. https://doi.org/10.3390/molecules23123220

    Article  CAS  Google Scholar 

  • Nagore P, Ghotekar S, Mane K, Ghoti A, Bilal M, Roy A (2021) Structural properties and antimicrobial activities of Polyalthia longifolia leaf extract-mediated CuO nanoparticles. BioNanoScience 11:579–589

    Article  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of Silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5(4):452–456. https://doi.org/10.1016/j.nano.2009.01.012

  • Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2018) Green synthesized Silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant acinetobacter Baumanii. Microb Pathog 116:263–272. https://doi.org/10.1016/j.micpath.2018.01.033

    Article  CAS  Google Scholar 

  • Pechyen C, Ponsanti K, Tangnorawich B, Ngernyuang N (2021) Waste fruit peel-mediated green synthesis of biocompatible Gold nanoparticles. J Market Res 14:2982–2991

    CAS  Google Scholar 

  • Perni S, Hakala V, Prokopovich P (2014) Biogenic synthesis of antimicrobial Silver nanoparticles capped with L-Cysteine. In: 27th European colloid and interface society conference (27th ECIS 2013), vol 460, pp 219–224. https://doi.org/10.1016/j.colsurfa.2013.09.034

  • Phull A-R, Abbas Q, Ali A, Raza H, Kim SJ, Zia M, Ihsan-ul Haq (2016) Antioxidant, cytotoxic and antimicrobial activities of green synthesized Silver nanoparticles from crude extract of Bergenia ciliata. Future J Pharm Sci 2(1):31–36. https://doi.org/10.1016/j.fjps.2016.03.001

  • Pourreza N, Golmohammadi H, Naghdi T, Yousefi H (2015) Green in-situ synthesized Silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron 74:353–359. https://doi.org/10.1016/j.bios.2015.06.041

    Article  CAS  Google Scholar 

  • Prosposito P, Burratti L, Venditti I (2020) Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors 8(2). https://doi.org/10.3390/chemosensors8020026

  • Puente C, Gómez I, Kharisov B, López I (2019) Selective colorimetric sensing of Zn(II) ions using green-synthesized Silver nanoparticles: Ficus benjamina extract as reducing and stabilizing agent. Mater Res Bull 112:1–8. https://doi.org/10.1016/j.materresbull.2018.11.045

    Article  CAS  Google Scholar 

  • Ramasami N, Malathi S, Paul S, Palani P (2018) Green synthesis and characterization of bioinspired Silver, Gold and Platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng C 96. https://doi.org/10.1016/j.msec.2018.11.050.

  • Raut RW, Mendhulkar VD, Kashid SB (2014) Photosensitized synthesis of Silver nanoparticles using Withania somnifera leaf powder and silver nitrate. J Photochem Photobiol, B 132:45–55. https://doi.org/10.1016/j.jphotobiol.2014.02.001

    Article  CAS  Google Scholar 

  • Ravi S, Christena R, Nagarajan S, Anthony S (2013) Green synthesized Silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide PH range. Analyst 138. https://doi.org/10.1039/c3an00320e

  • Rodríguez-León E, Iñiguez-Palomares R, Navarro RE, Herrera-Urbina R, Tánori J, Iñiguez-Palomares C, Maldonado A (2013) Synthesis of Silver nanoparticles using reducing agents obtained from natural sources (Rumex Hymenosepalus extracts). Nanoscale Res Lett 8(1):318. https://doi.org/10.1186/1556-276X-8-318

    Article  CAS  Google Scholar 

  • Roopan SM, Rohit G, Madhumitha AA, Rahuman C, Kamaraj AB, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of Silver nanoparticles using Cocos Nucifera Coir extract and its larvicidal activity. Ind Crops Prod 43:631–635. https://doi.org/10.1016/j.indcrop.2012.08.013

    Article  CAS  Google Scholar 

  • Roy A, Bharadvaja N (2019) Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired Biomimetic Nanobiomater 8(2):130–140

    Article  Google Scholar 

  • Roy K, Sarkar C, Ghosh C (2015) Single-step novel biosynthesis of Silver nanoparticles using Cucumis sativus fruit extract and study of its photocatalytic and antibacterial activity. Dig J Nanomater Biostruct 10:107–115

    Google Scholar 

  • Roy A, Elzaki A, Tirth V, Kajoak S, Osman H, Algahtani A, Bilal M (2021) Biological synthesis of nanocatalysts and their applications. Catalysts 11(12):1494

    Article  CAS  Google Scholar 

  • Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of Silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc 134:310–315. https://doi.org/10.1016/j.saa.2014.06.046

    Article  CAS  Google Scholar 

  • Sadeghi B, Rostami A, Momeni SS (2015) Facile green synthesis of Silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 134:326–332. https://doi.org/10.1016/j.saa.2014.05.078

    Article  CAS  Google Scholar 

  • Samari F, Salehipoor H, Eftekhar E, Yousefinejad S (2018) Low-temperature biosynthesis of Silver nanoparticles using Mango leaf extract: catalytic effect, antioxidant properties, anticancer activity and application for colorimetric sensing. New J Chem 42. https://doi.org/10.1039/C8NJ03156H

  • Sathishkumar M, Sneha K, Won SW, Cho C-W, Kim S, Yun Y-S (2009) Cinnamon Zeylanicum bark extract and powder mediated green synthesis of nano-crystalline Silver particles and its bactericidal activity. Colloids Surf, B 73(2):332–338. https://doi.org/10.1016/j.colsurfb.2009.06.005

    Article  CAS  Google Scholar 

  • Sebastian M, Aravind A, Mathew B (2018) Green Silver-nanoparticle-based dual sensor for toxic Hg(II) ions. Nanotechnology 29(35):355502. https://doi.org/10.1088/1361-6528/aacb9a

    Article  CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A (2007) Rapid synthesis of Silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923. https://doi.org/10.1016/j.procbio.2007.02.005

    Article  CAS  Google Scholar 

  • Shaikh WA, Chakraborty S, Owens G, Islam RU (2021) A review of the phytochemical mediated synthesis of AgNP (Silver nanoparticle): the wonder particle of the past decade. Appl Nanosci 11(11):2625–2660. https://doi.org/10.1007/s13204-021-02135-5

    Article  CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of Silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943. https://doi.org/10.1016/j.procbio.2009.04.009

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Jaffar EA, Al-Mulla NA, Ibrahim PS, Rustaiyan A, Abdollahi Y et al (2012) Green biosynthesis of Silver nanoparticles using Callicarpa Maingayi stem bark extraction. Molecules (basel, Switzerland) 17(7):8506–8517. https://doi.org/10.3390/molecules17078506

    Article  CAS  Google Scholar 

  • Shobana C, Rangasamy B, Poopal RK, Renuka S, Ramesh M (2018) Green synthesis of Silver nanoparticles using Piper Nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major Carp Labeo Rohita. Environ Sci Pollut Res 25(12):11812–11832. https://doi.org/10.1007/s11356-018-1454-z

    Article  CAS  Google Scholar 

  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Farh M-A, Yang DC (2016) Biogenic Silver and Gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol 44(3):811–816. https://doi.org/10.3109/21691401.2015.1008514

    Article  CAS  Google Scholar 

  • Suresh G, Gunasekar PH, Kokila D, Prabhu D, Dinesh D, Ravichandran N, Ramesh B, Koodalingam A, Siva GV (2014) Green synthesis of Silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta Part A Mol Biomol Spectrosc 127:61–66. https://doi.org/10.1016/j.saa.2014.02.030

    Article  CAS  Google Scholar 

  • Vanaja M, Paulkumar K, Gnanajobitha G, Rajeshkumar S, Malarkodi C, Annadurai G (2014) Herbal plant synthesis of antibacterial Silver nanoparticles by Solanum trilobatum and its characterization. Int J Metals 2014:692461. https://doi.org/10.1155/2014/692461

  • Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014) Green synthesis and characterization of Silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod 52:562–566. https://doi.org/10.1016/j.indcrop.2013.10.050

    Article  CAS  Google Scholar 

  • Vinod Kumar V, Anbarasan S, Christena LR, SaiSubramanian N, Anthony SP (2014) Bio-functionalized Silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies. Spectrochim Acta Part A Mol Biomol Spectrosc 129:35–42. https://doi.org/10.1016/j.saa.2014.03.020

    Article  CAS  Google Scholar 

  • Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, **e H (2020) Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10(20):8996

    Google Scholar 

  • Yang N, Li W-H (2013) Mango peel extract mediated novel route for synthesis of Silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind Crops Prod 48:81–88. https://doi.org/10.1016/j.indcrop.2013.04.001

    Article  CAS  Google Scholar 

  • Zayed MF, Eisa WH, El-kousy SM, Mleha WK, Kamal N (2019) Ficus Retusa-stabilized Gold and Silver nanoparticles: controlled synthesis, spectroscopic characterization, and sensing properties. Spectrochim Acta Part A Mol Biomol Spectrosc 214:496–512. https://doi.org/10.1016/j.saa.2019.02.042

    Article  CAS  Google Scholar 

  • Zhang M, Zhang K, De Gusseme B, Verstraete W, Field R (2014) The antibacterial and anti-biofouling performance of biogenic Silver nanoparticles by Lactobacillus fermentum. Biofouling 30(3):347–357. https://doi.org/10.1080/08927014.2013.873419

    Article  CAS  Google Scholar 

  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  • Zuas O, Hamim N, Sampora Y (2014) Bio-synthesis of Silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant). Mater Lett 123:156–159. https://doi.org/10.1016/j.matlet.2014.03.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Sabale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mane-Gavade, S., Gaikwad, P., Dhabbe, R., Umdale, S., Patil, S., Sabale, S. (2022). Phytonanotechnological Approach for Silver Nanoparticles: Mechanistic Aspect, Properties, and Reliable Heavy Metal Ion Sensing. In: Shah, M.P., Roy, A. (eds) Phytonanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4811-4_8

Download citation

Publish with us

Policies and ethics

Navigation