Chemistry and Physiology of Fruits and Vegetables

  • Chapter
  • First Online:
Advances in Food Chemistry

Abstract

Fruits and vegetables are living entities even after harvest with differential composition of nutrients with lot many biochemical and physiological process happening inside them. They are rich in water; and carbohydrate, protein, lipids, vitamins, minerals and bioactive compounds are their major components, which can be altered by the metabolic processes such as respiration, transpiration and ripening. Fruit development, maturity and ripening are genetically regulated phenomenon leading to consumer appreciable quality attributes. Fruit and vegetable vary in their chemistry and physiology, which decides their processing stability, palatable quality, shelf life and storage behavior. Proper understanding of fruit chemistry and physiology, and control of ripening process using better storage techniques and genetic modification will help in reducing undesirable changes occurring due to ripening, hence kee** the produce more aesthetically as well as nutritionally sound for longer duration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abushita AA, Daood HG, Biacs PA (2000) Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J Agric Food Chem 48:2075–2081

    Article  CAS  PubMed  Google Scholar 

  • Aguilo-Aguayo I, Soliva-Fortuny R, Martin-Belloso O (2009) Avoiding non enzymatic browning byhigh-intensity pulsed electric fields in strawberry, tomato and watermelon juices. J Food Eng 92:37–43

    Article  CAS  Google Scholar 

  • Arora SK, Chauhan OP (2019) High pressure processing: principles and engineering aspects. In: Chauhan OP (ed) Non-thermal food processing technologies. CRC Press, Boca Raton, FL, pp 1–9

    Google Scholar 

  • Arthur E, Oduro I, Kumah P (2015) Effect of maturity stage and postharvest calcium chloride treatment on the quality and storage life of tomatoes (Lycopersicon esculentum Mill). J Postharvest Technol 3:74–81

    Google Scholar 

  • Asghari M, Aghdam MS (2010) Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Sci Technol 21(10):502–509

    Article  CAS  Google Scholar 

  • Balakrishna AK, Wazed MA, Farid M (2020) A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules 25:2369. https://doi.org/10.3390/molecules25102369

    Article  CAS  PubMed Central  Google Scholar 

  • Barrett DM (2007) Maximizing the nutritional value of fruits & vegetables. Food Technol 61(4):40–44

    CAS  Google Scholar 

  • Ben-Arie R, Or E (1986) The development and control of husk scald on wonderful pomegranate fruit during storage. J Am Soc Hortic Sci 111(3):395–399

    Article  Google Scholar 

  • Bernardes SAP, Nascimento JRO, Lajolo FM et al (2008) Starch mobilization and sucrose accumulation in the pulp of Keitt mangoes during postharvest ripening. J Food Biochem 32:384–395. https://doi.org/10.1111/j.1745-4514.2008.00175.x

    Article  Google Scholar 

  • Bonina-Noseworthy J, Brent Loy J, Curran-Celentano J et al (2016) Carotenoid concentration and composition in winter squash: variability associated with different cultigens, harvest maturities, and storage times. Hortic Sci (51, 5):472–480

    Google Scholar 

  • Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):237–248

    Google Scholar 

  • Bubba DM, Giordani E, Pippucci L et al (2009) Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J Food Comp Anal 22(7–8):668–677

    Article  Google Scholar 

  • Bufler G (2009) Exogenous ethylene inhibits sprout growth in onion bulbs. Annals Botany 103(1):23–28

    Article  CAS  Google Scholar 

  • Chauhan OP (ed) (2019) Non-thermal food processing technologies. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chhatpar HS, Mattoo AK, Modi VV (1971) Biochemical studies on chilling injury in mangoes. Phytochemistry 10(5):1007–1009

    Article  CAS  Google Scholar 

  • Chidtragool S, Ketsa S, Bowen J et al (2011) Chilling injury in mango fruit peel: cultivar differences are related to the activity of phenylalanine ammonia lyase. Postharvest Biol Technol 62(1):59–63

    Article  CAS  Google Scholar 

  • Cilla A, Rodrigo MJ, de Ancos B et al (2020) Impact of high-pressure processing on the stability and bioaccessibility of bioactive compounds in Clementine mandarin juice and its cytoprotective effect on Caco-2 cells. Food Funct 11:8951–8962

    Article  CAS  PubMed  Google Scholar 

  • Das PR, Eun JB (2020) Removal of astringency in persimmon fruits (Diospyros kaki) subjected to different freezing temperature treatments. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04818-3

  • Deshpande AB, Chidley HG, Oak PS et al (2016) Data on changes in the fatty acid composition during fruit development and ripening of three mango cultivars (Alphonso, Pairi and Kent) varying in lactone content. J Data Brief 9:480–491

    Article  Google Scholar 

  • Elavarasan M, Premalatha A (2019) A review: nutrient deficiencies and physiological disorders of citrus. J Pharmacog Phytochem 8(4):1705–1708

    CAS  Google Scholar 

  • Elez-Martinez P, Soliva-Fortuny RC, Martin-Belloso O (2006) Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. Eur Food Res Technol 222:321–329

    Article  CAS  Google Scholar 

  • Elyatem SM, Kader AA (1984) Post-harvest physiology and storage behaviour of pomegranate fruits. Scientia Hortic 24(3–4):287–298

    Article  Google Scholar 

  • Erkmen O,Faruk Bozoglu T (eds) (2016)Food Microbiology: Principles into Practice (Volume 1 : Microorganisms Related to Foods, Foodborne Diseases, and Food Spoilage). John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Fasogbon BM, Gbadamosi SO, Taiwo KA (2013) Studies on the chemical and sensory properties of jam from osmotically dehydrated pineapple slices. Curr J Appl Sci Technol 14:1327–1335

    Google Scholar 

  • Garud SR, Priyanka BS, Rastogi NK et al (2018) Efficacy of ozone and lactic acid as nonthermal hurdles for preservation of sugarcane juice. Ozone Sci Eng 40:198–208

    Article  CAS  Google Scholar 

  • Gaur S, Shivhare US, Ahmed J (2006) Degradation of chlorophyll during processing of green vegetables: a review. Stewart Postharvest Review 5:14

    Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(Suppl):S170–S180. https://doi.org/10.1105/tpc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haguluha V, Natera E (2007) Quality management of fresh produce from the highlands of Papua New Guinea: a postharvest manual. Australian Centre for International Agricultural Research (ACIAR)

    Google Scholar 

  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48(7):540–546

    Article  CAS  PubMed  Google Scholar 

  • Hassan A, Wills R, Atan RM et al (2010) Blackheart disorder in fresh pineapple. New trends in postharvest Management of Fresh Produce II. Fresh Produce 4:29–35

    Google Scholar 

  • Holcroft D (2015) Water relations in harvested fresh produce. PEF White paper (15-01):16

    Google Scholar 

  • Howard LA, Wong AD, Perry AK et al (1999) β-Carotene and ascorbic acid retention in fresh and processed vegetables. J Food Sci 64:929–936

    Article  CAS  Google Scholar 

  • Hsu YL, Chen SC, Lin KW et al (2018) Quarantine vapor heat treatment of papaya fruit for Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae). J Eco Entomol 111(5):2101–2109

    Article  Google Scholar 

  • Hwang ES, Stacewicz Sapuntzakis M, Bowen PE (2012) Effects of heat treatment on the carotenoid and tocopherol composition of tomato. J Food Sci 77(10):C1109–C1114

    Article  CAS  PubMed  Google Scholar 

  • Imsabai W, Ketsa S, van Doorn W (2006) Physiological and biochemical changes during banana ripening and finger drop. Postharvest Biol Technol 39(2):211–216

    Article  CAS  Google Scholar 

  • Ingle M, D’souza MC (1989) Physiology and control of superficial scald of apples: a review. HorticSci 24(1):28–31

    Google Scholar 

  • Instituto Colombiano de Bienestar Familiar (ICBF) (2015). Tabla de composición de alimentos Colombia. Bogotá SAS (ed) Bogotá: Universidad Nacional de Colombia, pp 1–321

    Google Scholar 

  • Itai A (2015) Watercore in fruits. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer, Tokyo, pp 127–145. https://doi.org/10.1007/978-4-431-55251-2_10

    Chapter  Google Scholar 

  • Jahurul MHA, Zaidul ISM, Ghafoor K et al (2015) Mango (Mangifera indica L.) by products and their valuable components: a review. Food Chem 184:173–180. https://doi.org/10.1016/j.foodchem.2015.03.046

    Article  CAS  Google Scholar 

  • Jiang Y, Gong NN, Matsunami H (2014) Astringency: a more stringent definition. Chem Senses 39(6):467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiratanan T, Liu RH (2004) Antioxidant activity of processed table beets (Beta vulgaris var. conditiva) and green beans (Phaseolus vulgaris L.). J Agric Food Chem 52:2659–2670

    Article  CAS  PubMed  Google Scholar 

  • Kader AA, Barrett DM (1996) Classification, composition of fruits, and postharvest maintenance of quality. Processing fruits. Sci Technol 1:1–24

    CAS  Google Scholar 

  • Konsue W, Dethoup T, Limtong S (2020) Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms 8(3):317

    Article  CAS  PubMed Central  Google Scholar 

  • Kosseva MR, Joshi VK, Panesar PS (eds) (2016) Science and technology of fruit wine production. Academic Press, Cambridge

    Google Scholar 

  • Kumar R, Bawa AS, Kathiravan T et al (2013) Thermal processing of mango nectar (Mangifera indica) and its effect on chemical, microbiological and sensory quality characteristics. Int J Adv Res 1(8):261–273

    Google Scholar 

  • Lattanzio V, Kroon PA, Quideau S et al (2008) Plant phenolics—secondary metabolites with diverse functions. Recent Adv Polyphenol Res 1:1–35

    CAS  Google Scholar 

  • Lessin WJ, Catigani GL, Schwartz SJ (1997) Quantification of cis–trans isomers of provitamin A carotenoids in fresh and processed fruits and vegetables. J Agric Food Chem 45:3728–3732

    Article  CAS  Google Scholar 

  • Luengwilai K, Beckles DM, Siriphanich J (2016) Postharvest internal browning of pineapple fruit originates at the phloem. J Plant Physiol 202:121–133

    Article  CAS  PubMed  Google Scholar 

  • Luengwilai K, Beckles DM, Roessner U et al (2018) Identification of physiological changes and key metabolites coincident with postharvest internal browning of pineapple (Ananas comosus L.) fruit. Postharvest Biol Technol 137:56–65

    Article  CAS  Google Scholar 

  • Luyckx A, Lechaudel M, Hubert O et al (2016) Banana physiological post-harvest disorders: a review. MOJ Food Process Technol 3(1):226–231

    Google Scholar 

  • Maraei RW, Elsawy KM (2017) Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. J Radiation Res Appl Sci 10:80–87. https://doi.org/10.1016/j.jrras.2016.12.004

    Article  CAS  Google Scholar 

  • Matthais JP (1995) Factors contributing to internal breakdown of Fuji apples. Washington State University Tree Fruit Postharvest J 6:3–4

    Google Scholar 

  • Mayeaux M, Xu Z, King JM et al (2006) Effects of cooking conditions on the lycopene content in tomatoes. J Food Sci 71(8):C461–C464

    Article  CAS  Google Scholar 

  • Minguez-Mosquera MI, Garrido-Fernandez J, Gandul-Rojas B (1989) Pigment changes in olives during fermentation and brine storage. J Agric Food Chem 37:8–11

    Article  CAS  Google Scholar 

  • Murcia MA, Lopez-Ayerra B, Martinez-Tome M et al (2000) Evolution of ascorbic acid and peroxidase during industrial processing of broccoli. J Sci FoodAgric 80:1882–1886

    Article  CAS  Google Scholar 

  • Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 50(8):728–760

    Article  CAS  PubMed  Google Scholar 

  • Negi PS, Roy SK (2000a) Effect of low cost storage and packaging on quality and nutritive value of fresh and dehydrated carrots. J Sci Food Agric 80:2169–2175

    Article  CAS  Google Scholar 

  • Negi PS, Roy SK (2000b) Effect of blanching and drying methods on β-carotene, ascorbic acid and chlorophyll retention of leafy vegetables. LWT-Food Sci Technol 33:295–298

    Article  CAS  Google Scholar 

  • Ohlendorf B (1999) Integrated pest management for apples & pears. University of California, Agriculture and Natural Resources

    Google Scholar 

  • Oliveira JG, Morales LMM, Silva WM (2018) Postharvest physiological disorders in papaya. In: Tonetto de Freitas S, Pareek S (eds) Postharvest physiological disorders in fruits and vegetables (innovations in postharvest technology series), 1st edn. CRC Press, Boca Raton, pp 399–422

    Google Scholar 

  • Olson DG (1998) Irradiation of food. Food Technol 52(1):56–62

    Google Scholar 

  • Ounamornas P, Page P, Sommano S (2019) Aromatic profile changes of Thai mangoes during heat processing. Acta Hortic 1244:181–186

    Article  Google Scholar 

  • Oye I, Van der Plancken I, Van Loey A et al (2008) Does high pressure processing influences nutritional aspects of plant based food systems? Trends Food Sci Technol 19:300–308

    Article  Google Scholar 

  • Paltrinieri G, Staff FA (2014) Handling of fresh fruits, vegetables and root crops: a training manual for Grenada. http://www.fao.org/3/a-au186e.pdf

  • Pantastico EB (1975) Post harvest physiology, handling and utilization of tropical and subtropical fruits and vegetables. AVI Pub Co Inc, Westport

    Google Scholar 

  • Paull R (1996) Ethylene, storage and ripening temperatures affect dwarf Brazilian banana finger drop. Postharvest Biol Technol 8:65–74

    Article  Google Scholar 

  • Phan C, Hsu H, Sarkar SK (1973) Physical and chemical changes occurring in the carrot root during storage. CanJ Plant Sci 53:635–641

    Article  Google Scholar 

  • Prabath Pathirana UA, Sekozawa Y, Sugaya S et al (2013) Changes in lipid oxidation stability and antioxidant properties of avocado in response to 1-MCP and low oxygen treatment under low-temperature storage. Int Food Res J 20(3):1065–1075

    CAS  Google Scholar 

  • Rajashri K, Roopa BS, Negi PS et al (2019) Effect of ozone and ultrasound treatments on polyphenol content, browning enzyme activities and shelf life of tender coconut water. J Food Process Preserv. https://doi.org/10.1111/jfpp.14363

  • Ram RA, Rahim MA, Alam MS (2020) Diagnosis and management of nutrient constraints in mango. In: Srivastava AK, Chengxiao H (eds) Fruit crops. Elsevier, Amsterdam, pp 629–650

    Chapter  Google Scholar 

  • Rashmi HB, Negi PS (2020) Phenolic acids from vegetables: a review on processing stability and health benefits. Food Res Int. https://doi.org/10.1016/j.foodres.2020.109298

  • Raymond L, Schaffer B, Brecht JK et al (1998) Internal breakdown in mango fruit: symptomology and histology of jelly seed, soft nose and stem-end cavity. Postharvest Biol Technol 13(1):59–70

    Article  Google Scholar 

  • Rickman JC, Barrett DM, Bruhn CM (2007a) Nutritional comparison of fresh, frozen and canned fruits and vegetables I. Vitamins C and B and phenolic compounds. J Sci Food Agric 87:930–944

    Article  CAS  Google Scholar 

  • Rickman JC, Bruhn CM, Barrett DM (2007b) Nutritional comparison of fresh, frozen and canned fruits and vegetables II. Vitamins A and carotenoids, Vitamin E, minerals and fiber. J Sci Food Agric 87:1185–1196

    Article  CAS  Google Scholar 

  • Saleem-Dar M, Oak P, Chidley H et al (2016) Nutrient and flavor content of mango (Mangifera indicaL.) cultivars: an appurtenance to the list of staple foods. In: Simmonds MSJ, Preedy VR (eds) Nutritional composition of fruit cultivars, 1st edn. Elsevier, Amsterdam, pp 445–468. https://doi.org/10.1016/B978-0-12-408117-8.00019-2

    Chapter  Google Scholar 

  • Sawamura M, Kuriyama T, Li Z (1988) Rind spot, antioxidative activity and tocopherols in the flavedo of citrus fruits. J Hortic Sci 63(4):717–721

    Article  CAS  Google Scholar 

  • Seybold C, Frohlich K, Bitsch R et al (2004) Changes in contents of carotenoids and vitamin E during tomato processing. J Agric Food Chem 52:7005–7010

    Article  CAS  PubMed  Google Scholar 

  • Shivashankar S (2014) Physiological disorders of mango fruit. In: Janick J (ed) Horticultural reviews, vol 42, pp 313–347

    Google Scholar 

  • Sim SY, Karwe MV, Moraru CI (2019) High pressure structuring of pea protein concentrates. J Food Process Eng 42(7):e13261

    Article  Google Scholar 

  • Smith MJ, Bucher G (2012) Tools to study the degradation and loss of the N-phenyl carbamate chlorpropham-a comprehensive review. Environ Int 49:38–50

    Article  PubMed  Google Scholar 

  • Solovchenko A, Yahia EM, Chen C (2019) Pigments. In: Yahia EM (ed) Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing, Cambridge, pp 225–252

    Google Scholar 

  • Swain MR, Anandharaj M, Ray RC et al (2014) Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnol Res Int. https://doi.org/10.1155/2014/250424

  • Tabar SM, Tehranifar A, Davarynejad GH et al (2009) Aril paleness, new physiological disorder in pomegranate fruit (Punica granatum): physical and chemical changes during exposure of fruit disorder. Hortic Environ Biotechnol 50(4):300–307

    CAS  Google Scholar 

  • Tharanathan RN, Yashoda HM, Prabha TN (2006) Mango (Mangifera indica L.), the king of fruits—an overview. Food Rev Int 22(2):95–123

    Article  CAS  Google Scholar 

  • Tiwari BK, Muthukumarappan K, O’Donnell CP et al (2008) Kinetics of freshly squeezed orange juice quality changes during ozone processing. J Agric Food Chem 56(15):6416–6422

    Article  CAS  PubMed  Google Scholar 

  • Tiwari BK, O’Donnell CP, Muthukumarappan K et al (2009) Anthocyanin and colour degradation in ozone treated blackberry juice. Innov Food Sci Emerg Technol 10(1):70–75

    Article  CAS  Google Scholar 

  • United States Department of Agriculture, Agricultural Research Service (2018) USDA National nutrient database for standard reference, release 1 April, Nutrient Data Laboratory Home Page, https://ndb.nal.usda.gov/ndb/

  • Von Elbe JH, Schwartz SJ (1996) Colorants. In: Fennema OR (ed) Food chem, 3rd edn. Marcel Dekker Inc, New York, pp 651–722

    Google Scholar 

  • Watada AE (1986) Effects of ethylene on the quality of fruits and vegetables. Food Technol 40(5):82–85

    CAS  Google Scholar 

  • Wei Y, Zhang Q, Zheng Y (2000) Mechanism of puffiness and the methods of control in citrus fruit: I. the rule of early-maturing variety citrus and its physiological characters. J Hunan Agric Univ 26(4):267–270

    Google Scholar 

  • Weits J, van der Meer MA, Lassche JB et al (1970) Nutritive value and organoleptic properties of three vegetables fresh and preserved in six different ways. IntJ Vitam Nutr Res 40:648–658

    CAS  Google Scholar 

  • Wills RBH, Golding JB (2016) Postharvest: an introduction to the physiology and handling of fruit and vegetables. New South Publishing, Randwick

    Book  Google Scholar 

  • Wills RB, Evans TJ, Lim JS et al (1984) Composition of Australian foods. 25. Peas and beans. Food Technol Aust 36:512–514

    CAS  Google Scholar 

  • Yang CP, Fujita S, Kohno K et al (2001) Partial purification and characterization of polyphenol oxidase from banana (Musa sapientum L.) peel. J Agric Food Chem 49(3):1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Pan X, Qu H et al (2014) Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. J Bioenerg Biomembr 46(1):59–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashmi, H.B., Negi, P.S. (2022). Chemistry and Physiology of Fruits and Vegetables. In: Chauhan, O.P. (eds) Advances in Food Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-4796-4_12

Download citation

Publish with us

Policies and ethics

Navigation