Oxygen Production by Sulfuric Acid Decomposition Assisted with Membrane

  • Chapter
  • First Online:
CO2 Free Ammonia as an Energy Carrier
  • 1504 Accesses

Abstract

The SO3 decomposition reaction in the H2SO4 decomposition process has an equilibrium conversion rate of 80% or higher at a reaction temperature of 800 °C, but the conversion decreases to about 30% at 600 °C. SO3 decomposition assisted with a membrane, i.e., SO3 decomposition membrane reactor, has been developed in order to improve the conversion at moderate temperatures (≤650 °C) by extracting O2 with the O2 permselective membrane from the reaction products and shifting the reaction equilibrium. To realize the concept, SO3 decomposition catalysts operating at moderated temperatures and O2 permselective membranes were developed. In addition to the catalytic activity, tolerance to the high-temperature corrosive environment, which severely damages most conventional catalytic materials within a short time, is an essential factor. In order to satisfy these conditions, the catalysts have been developed with active components such as platinum (Pt), vanadium (V), and support materials such as titanium dioxide (TiO2), silicon dioxide (SiO2), which have excellent acid resistance. Silica and bis(triethoxysilyl)ethane (BTESE)-derived organosilica membranes formed on a porous α-Al2O3 support has been developed as the O2 permselective membrane showing O2/SO3 selectivity of 10–20 with thermal and chemical stability. In addition, a membrane reactor for SO3 decomposition assisted with the O2 permselective membrane was confirmed to increase SO3 conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meng L et al (2015) Catalytic membrane reactors for SO3 decomposition in Iodine-sulfur thermochemical cycle: a simulation study. Int J Hydrogen Energy 40:12687–12696

    Article  CAS  Google Scholar 

  2. Meng L et al (2016) Enhanced decomposition of sulfur trioxide in the water-splitting iodine–sulfur process via a catalytic membrane reactor. J Mater Chem A 4:15316–15319

    Article  CAS  Google Scholar 

  3. Yu X et al (2019) Evaluating the chemical stability of metal oxides in SO3 and applications of SiO2-based membranes to O2/SO3 separation. J Am Ceram Soc 102:6946–6956

    Article  CAS  Google Scholar 

  4. Dokiya M et al (1977) Thermochemical hydrogen preparation-Part V. A feasibility study of the sulfur iodine cycle. Bull Chem Soc Jpn 50:2657–2660

    Article  CAS  Google Scholar 

  5. O’Keefe DR et al (1980) Catalysis research in thermochemical water-splitting processes. Catal Rev Sci Eng 22:325–369

    Article  Google Scholar 

  6. Tagawa H et al (1989) Catalytic decomposition of sulfuric acid using metal oxides as the oxygen generating reaction in thermochemical water splitting process. Int J Hydrogen Energy 14:11–17

    Article  CAS  Google Scholar 

  7. Kasahara S et al (2007) Flowsheet study of the thermochemical water-splitting iodine-sulfur process for effective hydrogen production. Int J Hydrogen Energy 32:489–496

    Article  CAS  Google Scholar 

  8. Sakaba N et al (2007) Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR. Int J Hydrogen Energy 32:4160–4169

    Article  CAS  Google Scholar 

  9. Meng L et al (2015) Permeation properties of BTESE–TEOS organosilica membranes and application to O2/SO2 gas separation. J Membr Sci 496:211–218

    Article  CAS  Google Scholar 

  10. el Yu X (2018) Improved thermal and oxidation stability of bis (triethoxysilyl) ethane (BTESE)-derived membranes, and their gas-permeation properties. J Mater Chem A 6:23378–232387

    Article  CAS  Google Scholar 

  11. Tsuru T (2018) Silica-based membranes with molecular-net-sieving properties: development and applications. J Chem Eng Jpn 51:713–725

    Article  CAS  Google Scholar 

  12. Noritake Co Ltd. (2019) SIP finishing report

    Google Scholar 

  13. Brown NR et al (2012) A review of catalytic sulfur (VI) oxide decomposition experiments. Int J Hydrogen Energy 37:2685–2698

    Article  CAS  Google Scholar 

  14. Rashkeev SN et al (2009) Catalytic activity of supported metal particles for sulfuric acid decomposition reaction. Catal Today 139:291–298

    Article  CAS  Google Scholar 

  15. Petkovic LM et al (2008) Pt/TiO2 (rutile) catalysts for sulfuric acid decomposition in sulfur-based thermochemical water-splitting cycles. Appl Catal A: Gen 338:27–36

    Article  CAS  Google Scholar 

  16. Banerjee AM et al (2015) A comprehensive study on Pt/Al2O3 granular catalyst used for sulfuric acid decomposition step in sulfur–iodine thermochemical cycle: changes in catalyst structure, morphology and metal-support interaction. Appl Catal B: Environ 162:327–337

    Article  CAS  Google Scholar 

  17. Nur ASM et al (2018) Pt supported on Ta2O5 as a stable SO3 decomposition catalyst for solar thermochemical water splitting cycles. ACS Appl Energy Mater 1:744–750

    Article  CAS  Google Scholar 

  18. Nur ASM et al (2017) Catalytic SO3 decomposition activity and stability of Pt supported on anatase TiO2 for solar thermochemical water splitting cycles. ACS Omega 2:7057–7065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nur ASM et al (2018) Phase-dependent formation of coherent interface structure between PtO2 and TiO2 and its impact on thermal decomposition behavior. J Phys Chem C 122:662–669

    Article  CAS  Google Scholar 

  20. Ramos-Fernández EV et al (2008) Pt/Ta2O5–ZrO2 catalysts for vapour phase selective hydrogenation of crotonaldehyde. Appl Catal A: Gen 349:165–169

    Article  Google Scholar 

  21. Machida M et al (2011) Efficient catalytic decomposition of sulfuric acid with copper vanadates as an oxygen-generating reaction for solar thermochemical water splitting cycles. Chem Commun 47:9591–9593

    Article  CAS  Google Scholar 

  22. Machida M et al (2012) Macroporous supported Cu–V oxide as a promising substitute of the Pt catalyst for sulfuric acid decomposition in solar thermochemical hydrogen production. Chem Mater 24:557–561

    Article  CAS  Google Scholar 

  23. Machida M et al (2013) Role of oxygen vacancies in catalytic SO3 decomposition over Cu2V2O7 in solar thermochemical water splitting cycles. J Phys Chem C 117:26710–26715

    Article  CAS  Google Scholar 

  24. Kawada T et al (2014) Molten copper hexaoxodivanadate: an efficient catalyst for SO3 decomposition in solar thermochemical water splitting cycles. Catal Sci Technol 4:780–785

    Article  CAS  Google Scholar 

  25. Kawada T et al (2015) Structure and SO3 decomposition activity of CeVO4/SiO2 catalysts for solar thermochemical water splitting cycles. Int J Hydrogen Energy 40:10726–10733

    Article  CAS  Google Scholar 

  26. Kawada T et al (2016) Catalytic SO3 decomposition activity and stability of A-V–O/SiO2 (A = Na, K, Rb, and Cs) for solar thermochemical water-splitting cycles. Ind Eng Chem Res 55:11681–11688

    Article  CAS  Google Scholar 

  27. Nur ASM et al (2018) Stability of molten-phase Cs–V–O catalysts for SO3 decomposition in solar thermochemical water splitting. ACS Appl Energy Mater 1:2041–2047

    Article  CAS  Google Scholar 

  28. Tsuru T et al (2004) Methane steam reforming by microporous catalytic membrane reactors. AIChE J 50:2794–2805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinori Tsuru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuru, T., Machida, M. (2023). Oxygen Production by Sulfuric Acid Decomposition Assisted with Membrane. In: Aika, Ki., Kobayashi, H. (eds) CO2 Free Ammonia as an Energy Carrier. Springer, Singapore. https://doi.org/10.1007/978-981-19-4767-4_13

Download citation

Publish with us

Policies and ethics

Navigation