Legumes and Pulses: Ways and Means to Enhance the Protein Quality

  • Chapter
  • First Online:
Conceptualizing Plant-Based Nutrition

Abstract

Leguminous crops such as peas, beans, pigeon pea, lentils, and chickpea are also called as pulses. Pulses constitute one of the paramount sources of dietary proteins for major parts of the world’s population, especially in those regions wherein consumption of animal protein is limited due to higher cost, nonaccessibility, and religious or cultural beliefs. In general, quality protein is mostly derived from animal source. The essential amino acids can also be obtained from plant proteins especially legume proteins by pairing them with cereal grains/proteins. Since, pulses have twofold high-protein content, compared with cereal grains, pulses can make an excellent complementary food source of protein for infants, children, and adults. In order to cater to the consumer’s demand for plant proteins, various processing techniques have been employed to enhance the protein quality including protein digestibility. Thermal processing (cooking, autoclaving, heating, and microwave), germination, irradiation, fermentation, extrusion, and spray- and freeze-drying methods have been adopted for improving the protein quality, especially protein digestibility, in pulses. Biofortification and genetic engineering approaches could also contribute as viable options to enhance essential amino acids or quality protein in mature seeds. Adoption of economically feasible options like processing methods discussed in this chapter and genetic enhancement of essential amino acids as well as protein quality in pulses and legumes can greatly help in alleviating malnutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alajaji SA, El-Adawy TA (2006) Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J Food Compos Anal 19:806–812

    Article  CAS  Google Scholar 

  • Altorf-van der Kuil W, Engberink MF, Vedder MM et al (2012) Sources of dietary protein in relation to blood pressure in a general Dutch population. PLoS One 7:e30582

    Article  PubMed  PubMed Central  Google Scholar 

  • Angulo-Bejarano PI, Verdugo-Montoya NM, Cuevas-Rodríguez EO et al (2008) Tempeh flour from chickpea (Cicer arietinum L.) nutritional and physicochemical properties. Food Chem 106(1):106–112

    Article  CAS  Google Scholar 

  • Arija I, Centeno C, Viveros A, Brenes A, Marzo F, Illera JC, Silvan G (2006) Nutritional evaluation of raw and extruded kidney bean (Phaseolus vulgaris L. var. Pinto) in chicken diets. Poult Sci 85(4):635–644

    Article  CAS  PubMed  Google Scholar 

  • Bai T, Nosworthy MG, House JD, Nickerson MT (2018) Effect of tempering moisture and infrared heating temperature on the nutritional properties of desi chickpea and hull-less barley flours, and their blends. Int Food Res J 108:430–439

    Article  CAS  Google Scholar 

  • Batista KA, Prudencio SH, Fernandes KF (2010) Changes in the functional properties and antinutritional factors of extruded hard-to-cook common beans (Phaseolus vulgaris, L.). J Food Sci 75:286–290

    Article  Google Scholar 

  • Bau H et al (1997) Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J Sci Food Agric 73:1

    Article  CAS  Google Scholar 

  • Ben-Tzvi Tzchori I, Perl A, Galili G (1996) Lysine and threonine metabolism are subject to complex patterns of regulation in Arabidopsis. Plant Mol Biol 32:727–734

    Article  CAS  PubMed  Google Scholar 

  • Bertipaglia LMA, DeMelo GMP, Sugohara A et al (2008) Chemical changes in soybean and corn processed by extrusion. Rev Bras Zootec 37(11):2003–2010

    Article  Google Scholar 

  • Bhat R, Sridhar KR (2008) Nutritional quality evaluation of electron beam-irradiated lotus (Nelumbo nucifera) seeds. Food Chem 107:174–184

    Article  CAS  Google Scholar 

  • Boye J, Wijesinha-Bettoni R, Burlingame B (2012) Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br J Nutr 108:S183–S211

    Article  CAS  PubMed  Google Scholar 

  • Brinch-Pedersen H, Galili G, Knudsen S, Holm PB (1996) Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol Biol 32:611–620

    Article  CAS  PubMed  Google Scholar 

  • Butts CA, Monro JA, Moughan PJ (2012) In vitro determination of dietary protein and amino acid digestibility for humans. Br J Nutr 108:S282–S287

    Article  CAS  PubMed  Google Scholar 

  • Casey R, Domoney C, Forster C et al (1998) The effect of modifying carbohydrate metabolism on seed protein gene expression in peas. J Plant Physiol 152:636–640

    Article  CAS  Google Scholar 

  • Chaves‐Lopez C, Serio A, Grande‐Tovar CD, Cuervo‐Mulet R, Delgado‐Ospina J, Paparella A (2014) Traditional fermented foods and beverages from a microbiological and nutritional perspective: the Colombian heritage. Compr Rev Food Sci Food Saf 13:1031–1048

    Article  Google Scholar 

  • Chilomer K, Zaleska K, Ciesiolka D, Gulewicz P, Frankiewicz A, Gulewcz K (2010) Changes in the alkaloid, α-galactoside and protein fractions content during germination of different lupin species. Acta Soc Bot Pol Pol 79(1):11–20

    Article  CAS  Google Scholar 

  • Chitra O et al (1996) Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods. Plant Foods Hum Nutr 49:307

    Article  CAS  PubMed  Google Scholar 

  • Coda R, Varis JM, Verni CG, Rizzello KK (2017) Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT Food Sci Technol 82:296–302

    Article  CAS  Google Scholar 

  • Cotacallapa-Sucapuca M, Vega EN, Maieves HA, Berrios JDJ, Morales P, Fernández-Ruiz V, Cámara M (2021) Extrusion process as an alternative to improve pulses products consumption. A review. Foods 10:1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidov D, Horstmann C, Meixner M et al (2003) Additive effects of the feed-back insensitive bacterial aspartate kinase and the Brazil nut 2S albumin on the methionine content of transgenic narbon bean (Vicia narbonensis L.). Mol Breed 11:187–201

    Article  CAS  Google Scholar 

  • Ehlermann DAE (2016) Wholesomeness of irradiated food. Radiat Phys Chem 129:24–29

    Article  CAS  Google Scholar 

  • El-Hady EAA, Habiba RA (2003) Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT 36:285–293

    Article  Google Scholar 

  • Elliott P, Stamler J, Dyer AR et al (2006) Association between protein intake and blood pressure: the INTERMAP study. Arch Intern Med 166:79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erbersdobler FH, Jahreis G (2017) Legumes in human nutrition nutrient content and protein quality of pulses. Ernahrungs Umschau 64(9):134–139

    Google Scholar 

  • Escobedo RM, Berrios JDJ, Gutiérrez-López GF (2014) Seeds as functional foods and nutraceuticals: new frontiers in food science. Nova Science Publishers, Inc, New York, pp 127–142

    Google Scholar 

  • Expósito SB, Vandenberg A, Peñas E, Frias J, Villaluenga CM (2021) Lentil and fava bean with contrasting germination kinetics: a focus on digestion of proteins and bioactivity of resistant peptides. Front Plant Sci 12:754287

    Article  Google Scholar 

  • Falco SC, Guida T, Locke M, Mauvais J, Sandres C, Ward RT, Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Nat Biotechnol 13:577–582

    Article  CAS  Google Scholar 

  • Frias J, Giacomino S, Peñas E et al (2011) Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. laguna seeds. LWT Food Sci Technol 44:1303–1308

    Article  CAS  Google Scholar 

  • Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44:631–653

    Article  CAS  Google Scholar 

  • Frizzi A et al (2008) Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol J 6:13–21

    CAS  PubMed  Google Scholar 

  • Galvez AF, Revilleza MJ, de Lumen BO, Krenz DC (2008) Enhancing the biosynthesis of endogenous methionine-rich proteins (MRP) to improve the protein quality of legumes via genetic engineering. Food for health in the Pacific rim. Food & Nutrition Press, Trumbull, pp 540–552

    Google Scholar 

  • George AA, De Lumen BO (1991) A novel methionine-rich protein in soybean seed: identification, amino acid composition, and N-terminal sequence. J Agric Food Chem 39:224–227

    Article  CAS  Google Scholar 

  • Ghavide RA, Prakash J (2007) The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT Food Sci Technol 40:1292–1299

    Article  Google Scholar 

  • Gibbon BC, Larkins BA (2005) Molecular genetic approaches to develo** quality protein maize. Trends Genet 21:227–233

    Article  CAS  PubMed  Google Scholar 

  • Guldiken B, Konieczny D, Franczyk A et al (2022) Impacts of infrared heating and tempering on the chemical composition, morphological, functional properties of navy bean and chickpea flours. Eur Food Res Technol 248(3):767–781

    Article  CAS  Google Scholar 

  • Han F, Moughan PJ, Li J, Pang S (2020) Digestible Indispensable Amino Acid Scores (DIAAS) of six cooked Chinese pulses. Nutrients 12(12):3831

    Article  CAS  PubMed Central  Google Scholar 

  • Hoffman LM, Donaldson DD, Herman EM (1988) A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. Plant Mol Biol 11(6):717–729

    Article  CAS  PubMed  Google Scholar 

  • Hotz C, Gibson RS (2007) Traditional food‐processing and preparation practices to enhance the bioavailability of micronutrients in plants‐based diets. J Nutr 137:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Houmard NM et al (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  CAS  PubMed  Google Scholar 

  • Hughes RK, Desforges N, Selwood C et al (2001) Genes affecting starch biosynthesis exert pleiotropic effects on the protein content and composition of pea seeds. J Sci Food Agric 81:877–882

    Article  CAS  Google Scholar 

  • Hughes GJ, Ryan DJ, Mukherjea R, Schasteen CS (2011) Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: criteria for evaluation. J Agric Food Chem 59(23):12707–12712

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Ma A, **e L et al (2016) Improving protein content and quality by over-expressing artificially synthetic fusion proteins with high lysine and threonine constituent in rice plants. Sci Rep 6:34427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirapa P, Normah H, Zamaliah MM, Asmah R, Mohamad K (2001) Nutritional quality of germinated cowpea flour (Vigna unguiculata) and its application in home prepared powdered weaning foods. Plant Foods Hum Nutr 56:203–216

    Article  CAS  PubMed  Google Scholar 

  • Kahajdova Z, Karovicova J (2007) Fermentation of cereals for specific purpose. J Food Nutr Res 46:51–57

    Google Scholar 

  • Kannan S, Nielsen SS, Mason AC (2011) Protein digestibility-corrected amino acid scores for bean and bean—rice infant weaning food products. J Agric Food Chem 49:5070–5074

    Article  Google Scholar 

  • Kelkar S, Siddiq M, Harte J, Dolan K, Nyombaire G, Suniaga H (2012) Use of low-temperature extrusion for reducing phytohemagglutinin activity (PHA) and oligosaccharides in beans (Phaseolus vulgaris L.) cv. Navy and Pinto. Food Chem 133:1636–1639

    Article  CAS  Google Scholar 

  • Khattab RY, Arntfield SD, Nyachoti CM (2009) Nutritional quality of legume seeds as affected by some physical treatments. Part 1: protein quality evaluation. LWT- Food Sci Technol 42:1107–1112

    Article  CAS  Google Scholar 

  • Lee SI et al (2001) Constitutive and seed-specific expression of a maize lysine-feedback insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol Breed 8:75–84

    Article  CAS  Google Scholar 

  • Lima DC, Miano AC, Augusto PED, Arthur V (2019) Gamma irradiation of common beans: effect on nutritional and technological properties. LWT 116:108539

    Article  CAS  Google Scholar 

  • Long X, Liu Q, Chan M, Wang Q, Sun SS (2013) Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnol J 11:490–501

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Villaluenga C, Torres A, Frias J, Vidal-Valverde C (2010) Semolina supplementation with processed lupin and pigeon pea flours improve protein quality of pasta. LWT Food Sci Technol 43(4):617–622

    Article  Google Scholar 

  • Mbithi-Mwikya S et al (2000) Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. LWT Food Sci Technol 33:9

    Article  CAS  Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280

    Article  CAS  PubMed  Google Scholar 

  • Mubarak AE (2005) Nutritional composition and antinutritional factors of mung bean seeds: the effect of cooking on in vitro digestibility of selected legumes 17 (Phaseolus aureus) as affected by some home traditional processes. Food Chem 89:489–495

    Article  CAS  Google Scholar 

  • Nkhata SG, Ayua E, Kamau EH, Shingiro JB (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6(8):2446–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosworthy MG, House JD (2017) Factors influencing the quality of dietary proteins: implications for pulses. Cereal Chem 94:49–57

    Article  CAS  Google Scholar 

  • Nosworthy MG, Medina G, Franczyk AJ, Neufeld J, Appah P, Utioh A, Frohlich P, House JD (2018) Effect of processing on the in vitro and in vivo protein quality of beans (Phaseolus vulgaris and Vicia faba). Nutrients 10:671

    Article  PubMed Central  Google Scholar 

  • Ohanenye I, Tsopmo A, Ejike C, Udenigwe C (2020) Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci Technol 101:213–222

    Article  CAS  Google Scholar 

  • Osman MA (2007) Effect of different processing methods, on nutrient composition, antinutritional factors, and in vitro protein digestibility of dolichos lablab bean [Lablab purpureus (L) sweet]. Pak J Nutr 6:299–303

    Article  Google Scholar 

  • Osman AMA, Hassan AB, Osman GAM, Mohammed N, Rushdi MAH, Diab EE et al (2014) Effects of gamma irradiation and/or cooking on nutritional quality of faba bean (Vicia faba L.) cultivars seeds. Int J Food Sci 51(8):1554–1560

    CAS  Google Scholar 

  • Paredes-López O, Harry GI (1989) Changes in selected chemical and antinutritional components during tempeh preparation using fresh and hardened common beans. J Food Sci 54:968–970

    Article  Google Scholar 

  • Pounis GD, Tyrovolas S, Antonopoulou M et al (2010) Long-term animal-protein consumption is associated with an increased prevalence of diabetes among the elderly: the Mediterranean Islands (MEDIS) study. Diabetes Metab 36:484–490

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna V, Rani PJ, Rao PR (2008) Nutritional quality of storage proteins during germination of Indian bean (Dolichos lablab. var. lignosus) seeds. Int J Food Sci Technol 43:944–949

    Article  CAS  Google Scholar 

  • Sa AGA, Moreno YMF, Carciofi BAM (2019) Food processing for the improvement of plant proteins digestibility. Crit Rev Food Sci Nutr 60(20):3367–3386. https://doi.org/10.1080/10408398.2019.1688249

    Article  CAS  PubMed  Google Scholar 

  • Saleh AA, El-Adawy TA (2006) Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J Food Compos Anal 19:806–812

    Article  Google Scholar 

  • Schaafsma G (2012) Advantages and limitations of the protein digestibility-corrected amino 17 acid score (PDCAAS) as a method for evaluating protein quality in human diets. Br J Nutr 108:S333–S336

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer GW, Sharpe FT (1987) Increased lysine and seed storage protein in rice plants recovered from calli selected with inhibitory levels of lysine plus threonine and S-(2-aminoethyl) cysteine. Plant Physiol 84:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaul O, Galili G (1992) Increased lysine synthesis in transgenic tobacco plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J 2:203–209

    Article  CAS  Google Scholar 

  • Simons CW, Hall C, Tulbek M, Mendis M, Heck T, Ogunyemi S (2015) Acceptability and characterization of extruded pinto, navy and black beans. J Sci Food Agric 95(11):2287–2291

    Article  CAS  PubMed  Google Scholar 

  • Sluijs I, Beulens JW, van der Daphne AL et al (2010) Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 33:43–48

    Article  CAS  PubMed  Google Scholar 

  • Tavano OL, Neves VA, da Silver Júnior SI (2016) In vitro versus in vivo protein digestibility techniques for calculating PDCAAS (protein digestibility-corrected amino acid score) applied to chickpea fractions. Food Res Int 89:756–763

    Article  CAS  PubMed  Google Scholar 

  • Uppal V, Bains K (2012) Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. J Food Sci Technol 49:184–191

    Article  CAS  PubMed  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  CAS  PubMed  Google Scholar 

  • Wong HW, Liu Q, Sun SS (2015) Biofortification of rice with lysine using endogenous histones. Plant Mol Biol 87:235–248

    Article  CAS  PubMed  Google Scholar 

  • Xu M, ** Z, Simsek S, Hall C, Rao J, Chen B (2019) Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chem 295:579–587

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Matsuda F, Kasai K, Fukuoka S, Kitamura K, Tozawa Y, Miyagawa H, Wakasa K (2008) Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell 20(5):1316–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young VR, Pellet PL (1994) Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr 59:1203S–1212S

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Li C, Zhao Q, Zhu D, Yu J (2014) Seed-specific expression of a lysine-rich protein gene, GhLRP from cotton significantly increases the lysine content in maize seeds. Int J Mol Sci 15:5350–5365

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Schernthaner J, Labbé N, Hefford MA, Zhao J, Simmonds DH (2014) Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16. Transgenic Res 23(3):455–467

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vinutha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vinutha, T. et al. (2022). Legumes and Pulses: Ways and Means to Enhance the Protein Quality. In: S. V., R., Praveen, S. (eds) Conceptualizing Plant-Based Nutrition. Springer, Singapore. https://doi.org/10.1007/978-981-19-4590-8_6

Download citation

Publish with us

Policies and ethics

Navigation