Subdivisions of Neural Tube along the Rostrocaudal Axis: Neuromeric Models

  • Chapter
  • First Online:
Brain Development of Medaka Fish

Abstract

This chapter discusses the transverse subdivisions, which are positioned perpendicular to the longitudinal axis of the neural tube. The medaka neural plate has five tissue compartments that are located rostrocaudally as early as at stage 16+. The neural rod at stage 19 has three transverse swellings or vesicles. By stage 24, these vesicles develop into five brain vesicles in the neural tube: the rostral brain vesicle develops into the telencephalon and most of the diencephalon, the intermediate brain vesicle into the mesencephalon and metencephalon, and the caudal brain vesicle into the myelencephalon. Developmental studies in amniote embryos have shown that several boundaries in these transverse subdivisions act as local signaling centers, also known as the secondary organizers. In the medaka neural tube, gene expression patterns show that the longitudinal axis bends sharply at the diencephalon (cephalic flexure) between stages 21 and 24 and rostrally ends near the bases of the optic stalks in the telo-diencephalic boundary region. The rostral structures, such as the telencephalon and optic vesicles, rotate ventralward during this period. The transverse subdivisions of the medaka neural tube are further divisible into smaller areas based on the expression patterns of various developmental genes and the locations of fiber tracts. These results approve neuromeric architecture of the vertebrate brains. Finally, we discuss the prosomeric model, which has been proposed mainly based on molecular, genetic, and developmental studies in amniote embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affaticati P, Yamamoto K, Rizzi B, Bureau C, Peyrieras N, Pasqualini C, Demarque M, Vernier P (2015) Identification of the optic recess region as a morphogenetic entity in the zebrafish forebrain. Sci Rep 5:8738

    Article  PubMed  PubMed Central  Google Scholar 

  • Alunni A, Blin M, Deschet K, Bourrat F, Vernier P, Retaux S (2004) Cloning and developmental expression patterns of Dlx2, Lhx7 and Lhx9 in the medaka fish (Oryzias latipes). Mech Dev 121:977–983

    Article  CAS  PubMed  Google Scholar 

  • Barresi MJF, Gilbert SF (2019) Developmental biology, 12th edn. Sinauer Associates, an imprint of Oxford University Press, New York

    Google Scholar 

  • Bergquist H, Källén B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–659

    Article  CAS  PubMed  Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by fgf8 in the chick embryo. Nature 380:66–68

    Article  CAS  PubMed  Google Scholar 

  • Echevarría D, Vieira C, Gimeno L, Martínez S (2003) Neuroepithelial secondary organizers and cell fate specification in the develo** brain. Brain Res Brain Res Rev 43:179–191

    Article  PubMed  Google Scholar 

  • Hauptmann G, Gerster T (2000) Regulatory gene expression patterns reveal transverse and longitudinal subdivisions of the embryonic zebrafish forebrain. Mech Dev 91:105–118

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann G, Söll I, Gerster T (2002) The early embryonic zebrafish forebrain is subdivided into molecularly distinct transverse and longitudinal domains. Brain Res Bull 57:371–375

    Article  PubMed  Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in amphibia and reptilia. J Comp Neurol 20:413–547

    Google Scholar 

  • Herrick CJ (1962) Neurological Foundation of Animal Behavior. Hafner Publishing Co., New York

    Google Scholar 

  • Inohaya K, Yasumasu S, Ishimaru M, Ohyama A, Iuchi I, Yamagami K (1995) Temporal and spatial patterns of gene expression for the hatching enzyme in the teleost embryo, Oryzias latipes. Dev Biol 171:374–385

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y (2018) Medaka de saguru nou no hasseigaku (Developmental understanding of the vertebrate brain, using the medaka). Kouseisha Kouseikaku Co., Ltd., Tokyo

    Google Scholar 

  • Ishikawa Y, Yoshimoto M, Yamamoto N, Ito H, Yasuda T, Tokunaga F, Iigo M, Wakamatsu Y, Ozato K (2001) Brain structures of a medaka mutant, el (eyeless), in which eye vesicles do not evaginate. Brain Behav Evol 58:173–184

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Kage T, Yamamoto N, Yoshimoto M, Yasuda T, Matsumoto A, Maruyama K, Ito H (2004) Axonogenesis in the medaka embryonic brain. J Comp Neurol 476:240–253

    Article  PubMed  Google Scholar 

  • Ishikawa Y, Yamamoto N, Yasuda T, Yoshimoto M, Ito H (2010) Morphogenesis of the medaka cerebellum, with special reference to the mesencephalic sheet, a structure homologous to the rostrolateral part of mammalian anterior medullary velum. Brain Behav Evol 75:88–103

    Article  PubMed  Google Scholar 

  • Kage T, Takeda H, Yasuda T, Maruyama K, Yamamoto N, Yoshimoto M, Araki K, Inohaya K, Okamoto H, Yasumasu S, Watanabe K, Ito H, Ishikawa Y (2004) Morphogenesis and regionalization of the medaka embryonic brain. J Comp Neurol 476:219–239

    Article  PubMed  Google Scholar 

  • Kaufman MH (1994) The atlas of mouse development, Revised edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Keyser S (1972) The development of the diencephalon of the Chinese hamster. Acta Anat (Basel) suppl 59/1(83):1–181

    Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564

    Article  CAS  PubMed  Google Scholar 

  • Langman J (1981) Medical embryology, 4th edn. Williams & Wilkins Company, Baltimore

    Google Scholar 

  • Mueller T (2012) What is the thalamus in zebrafish? Front Neurosci 6:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Murakami Y, Ogasawara M, Saitoh N, Sugahara F, Myo** M, Hirano S, Kuratani S (2002) Compartments in the lamprey embryonic brain as revealed by regulatory gene expression and the distribution of reticulospinal neurons. Brain Res Bull 57:271–275

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 1. Springer-Verlag, Berlin, pp 159–228

    Chapter  Google Scholar 

  • Pasini A, Wilkinson DG (2002) Stabilizing the regionalisation of the develo** vertebrate central nervous system. BioEssays 24:427–438

    Article  CAS  PubMed  Google Scholar 

  • Puelles L (2001) Evolution of the nervous system. Brain Res Bull 55:695–710

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Medina L (2002) Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Res Bull 57:243–255

    Article  PubMed  Google Scholar 

  • Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JL (2015) A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front Neuroanat 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Amat JA, Matinez-de-la-Torre M (1987) Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos: I. topography of AChE-positive neuroblasts up to stage HH18. J Comp Neurol 266:247–268

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    Article  CAS  PubMed  Google Scholar 

  • Ross LS, Parrett T, Easter SS Jr (1992) Axonogenesis and morphogenesis in the embryonic zebrafish brain. J Neurosci 12:467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenstein JLR, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

    Article  CAS  PubMed  Google Scholar 

  • Schmitt EA, Dowling JE (1994) Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol 344:532–542

    Article  CAS  PubMed  Google Scholar 

  • Striedter GF (2018) Principles of brain evolution. Oxford University Press, Oxford

    Google Scholar 

  • Sugahara F, Pascual-Anaya J, Oisi Y, Kuraku S, Aota S, Adachi N, Takagi W, Hirai T, Sato N, Murakami Y, Kuratani S (2016) Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature 531:97–100

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (2012) Brain architecture, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Varner VD, Voronov DA, Taber LA (2010) Mechanisms of head fold formation: investigating tissue-level forces during early development. Development 137:3801–3811

    Article  PubMed  PubMed Central  Google Scholar 

  • von Kupffer C (1906) Die Morphogenie des Centralnervensystems. In: Hertwig O (ed) Handbuch der vergleichenden und experimenttellen Entwicklungslehre der Wirbeltiere, vol 2, part 3. Fischer, Jena, pp 1–272

    Google Scholar 

  • Watson C, Puelles L (2017) Developmental gene expression in the mouse clarifies the organization of the claustrum and related endopiriform nuclei. J Comp Neurol 525:1499–1508

    Article  CAS  PubMed  Google Scholar 

  • Wullimann MF, Puelles L (1999) Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat Embryol 329:329–348

    Article  Google Scholar 

  • Yamamoto K, Bloch S, Vernier P (2017) New perspective on the regionalization of the anterior forebrain in Osteichthyes. Develop Growth Differ 59:175–187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, Y., Yamamoto, N., Hagio, H. (2022). Subdivisions of Neural Tube along the Rostrocaudal Axis: Neuromeric Models. In: Brain Development of Medaka Fish. Springer, Singapore. https://doi.org/10.1007/978-981-19-4324-9_5

Download citation

Publish with us

Policies and ethics

Navigation