Development of Diencephalon, Optic Tectum, and Cerebellum

  • Chapter
  • First Online:
Brain Development of Medaka Fish

Abstract

This chapter describes the development of the medaka diencephalon, optic tectum, and cerebellum. The diencephalon of teleosts is divided into two main parts, the medial and lateral parts. The medial diencephalon is further divided into five regions, and these subdivisions become visible in the larvae at stage 39. The lateral diencephalon contains migrated cell groups, such as the corpus glomerulosum system and preglomerular nuclear complex (PG). Developmental studies by in situ hybridization using a pax6b2 gene probe suggest that the PG is migrated alar nuclei and a teleost homologue of the mammalian thalamus. According to recent studies, however, neurons of different origins may also contribute to the PG. The optic tectum has cell proliferation zones in the marginal edges, named the marginal proliferating zone. The generated cells are added tangentially at the tectum’s edge as a column of cells spanning the whole thickness of the tectum to form a laminated tectum. The cerebellar primordium is formed from the alar plates of the isthmic and the first rhombomeres. At stage 26, the isthmic rhombomere protrudes into the mesencephalic ventricle to form the valvula cerebelli, a cerebellar structure specific in ray-finned fishes except for polypteriforms. The cerebellar primordium is connected to the mesencephalon proper by the mesencephalic sheet, a thin neuroepithelium. The left/right halves of the primordium start to fuse at stage 34, and several cell proliferation zones are formed in the cerebellum at stage 36.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens K, Wullimann MF (2002) Hypothalamic inferior lobe and lateral torus connections in a percomorph teleost, the red cichlid (Hemichromis lifalili). J Comp Neurol 449:43–64

    Article  PubMed  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions. CRC Press, Boca Raton

    Google Scholar 

  • Bae Y-K, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima S-I, Hibi M (2009) Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 330:406–426

    Article  CAS  PubMed  Google Scholar 

  • Bloch S, Thomas M, Colin I, Galant S, Machado E, Affaticati P, Jenett A, Yamamoto K (2019) Mesencephalic origin of the inferior lobe in zebrafish. BMC Biol 17:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloch S, Hagio H, Thomas M, Heuzé A, Helmel J-M, Lasserre E, Colin I, Saka K, Affaticati P, Jenette A, Kawakami K, Yamamoto N, Yamamoto K (2020) Non-thalamic origin of zebrafish sensory nuclei implies convergent evolution of visual pathways in amniotes and teleosts. elife 9:e54945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braford MR Jr, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology, vol 2. The University of Michigan Press, Ann Arbor, pp 117–163

    Google Scholar 

  • Butts T, Modrell MS, Baker CVH, Wingate RJT (2014) The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish. Evol Dev 16:92–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa Y (2018) Medaka de saguru nou no hasseigaku (Developmental understanding of the vertebrate brain, using the medaka). Kouseisha Kouseikaku Co., Tokyo

    Google Scholar 

  • Ishikawa Y, Yamamoto N, Yoshimoto M, Yasuda T, Maruyama K, Kage T, Takeda H, Ito H (2007) Developmental origin of diencephalic sensory relay nuclei in teleosts. Brain Behav Evol 69:87–95

    Article  PubMed  Google Scholar 

  • Ishikawa Y, Yasuda T, Kage T, Takashima S, Yoshimoto M, Yamamoto N, Maruyama K, Takeda H, Ito H (2008) Early development of the cerebellum in teleost fishes: a study based on gene expression patterns and histology in the medaka embryo. Zool Sci 25:407–418

    Article  Google Scholar 

  • Ishikawa Y, Yamamoto N, Yasuda T, Yoshimoto M, Ito H (2010) Morphogenesis of the medaka cerebellum, with special reference to the mesencephalic sheet, a structure homologous to the rostrolateral part of mammalian anterior medullary velum. Brain Behav Evol 75:88–103

    Article  PubMed  Google Scholar 

  • Ito M (1993) Nou to kokoro wo kangaeru (Thinking about the brain and mind). Kinokuniya Shoten, Tokyo

    Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Yoshimoto M (1991) Shinkeikei (Nervous system). In: Itazawa Y, Hanyu I (eds) Gyorui seirigaku (Fish physiology). Kouseisha Kouseikaku Co., Tokyo, pp 363–402

    Google Scholar 

  • Johnston JB (1909) The morphology of the forebrain vesicle in vertebrates. J Comp Neurol 19:457–539

    Google Scholar 

  • Kamoi Y (1953) Koukotsugyorui Shishou no hikakukaibougakuteki kenkyu (Comparative studies of the thalamus in bony fishes). In: Collection of papers from the first Department of Anatomy, School of Medicine, Kyoto University, Kyoto, pp 1–43 with five figures

    Google Scholar 

  • Kani S, Bae Y-K, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima S-I, Hibi M (2010) Proneural gene-linked neurogenesiss in zebrafish cerebellum. Dev Biol 343:1–17

    Article  CAS  PubMed  Google Scholar 

  • Meek J, Nieuwenhuys R (1998) Holosteans and teleosts. In: Nieuwenhuys R, Donkelaar HJT, Nicholson C (eds) The central nervous system of vertebrates, vol 2. Springer-Verlag, Berlin, pp 759–937

    Chapter  Google Scholar 

  • Moens CB, Prince VE (2002) Constructing the hindbrain: insights from the zebrafish. Dev Dyn 224:1–17

    Article  PubMed  Google Scholar 

  • Nakane Y, Ikegami K, Ono H, Yamamoto N, Yoshida S, Hirunagi K, Ebihara S, Kubo Y, Yoshimura T (2010) A mammalian neural tissue opsin (opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci U S A 107:15264–15268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane Y, Ikegami K, Iigo M, Ono H, Takeda K, Takahashi D, Uesaka M, Kimijima M, Hashimoto R, Arai N, Suga T, Kosuge K, Abe T, Maeda R, Senga T, Amiya N, Azuma T, Amano M, Abe H, Yamamoto N, Yoshimura T (2013) The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun 4:2108

    Article  PubMed  Google Scholar 

  • Nguyen V, Deschet K, Henrich T, Godet E, Joly JS, Wittbrodt J, Chourrout D, Bourrat F (1999) Morphogenesis of the optic tectum in the medaka (Oryzias latipes): a morphological and molecular study, with special emphasis on cell proliferation. J Comp Neurol 413:385–404

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates, vol 1-3. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Palmgren A (1921) Embryological and morphological studies on the mid-brain and cerebellum of vertebrates. Acta Zool 2:1–94

    Article  Google Scholar 

  • Shimizu M, Yamamoto N, Yoshimoto M, Ito H (1999) Fiber connections of the inferior lobe in a percomorph teleost, Thamnaconus (Navodon) medestus. Brain Behav Evol 54:127–146

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (2012) Brain architecture, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Vaage S (1973) The histogenesis of the isthmic nuclei in chick embryos (Gallus domesticus). Z Anat Entwicklungsgesch 142:283–314

    Article  CAS  PubMed  Google Scholar 

  • Wullimann MF, Umeasalugo KE (2020) Sonic hedgehog expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from shh cells. J Comp Neurol 528:1321–1348

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Hagio H (2021) Cerebellum-like systems in actinopterygian fishes with a special focus on the diversity of cerebellum-like system in the mesencephalon. In: Mizusawa H, Kakei S (eds) Cerebellum as a CNS hub. Springer Nature, Cham, pp 25–60

    Chapter  Google Scholar 

  • Yamamoto N, Ito H (2002) Koukotsugyorui no shikyutaizenkaku (Preglomerular nucleus in bony fishes). Comp Physiol Biochem 19:198–202

    Google Scholar 

  • Yamamoto N, Ito H (2008) Visual, lateral line, and auditory ascending pathways to the dorsal telencephalic area thorough the rostral region of lateral preglomerular nucleus in cyprinids. J Comp Neurol 508:615–647

    Article  PubMed  Google Scholar 

  • Yang CY, Yoshimoto M, Xue HG, Yamamoto N, Imura K, Sawai N, Ishikawa Y, Ito H (2004) Fiber connections of the lateral valvular nucleus in a percomorph teleost, tilapia (Oreochromis niloticus). J Comp Neurol 474:209–226

    Article  PubMed  Google Scholar 

  • Yang C-Y, Xue H-G, Yoshimoto M, Ito H, Yamamoto N, Ozawa H (2007) Fiber connections of the corpus glomerulosum pars rotunda, with special reference to efferent projection pattern to the inferior lobe in a percomorph teleost, tilapia (Oreochromis niloticus). J Comp Neurol 501:582–607

    Article  PubMed  Google Scholar 

  • Yasuda T, Aoki K, Matsumoto A, Maruyama K, Hyodo-Taguchi Y, Fushiki S, Ishikawa Y (2006) Radiation-induced brain cell death can be observed in living medaka embryos. J Radiat Res 47:295–303

    Article  PubMed  Google Scholar 

  • Yasuda T, Yoshimoto M, Maeda K, Matsumoto A, Maruyama K, Ishikawa Y (2008) Rapid and simple method for quantitative evaluation of neurocytotoxic effects of radiation on develo** medaka brain. J Radiat Res 49:533–540

    Article  PubMed  Google Scholar 

  • Yasuda T, Oda S, Ishikawa Y, Watanabe-Asaka T, Hidaka M, Yasuda H, Anzai K, Mitani H (2009) Live imaging of radiation-induced apoptosis by yolk injection of acridine orange in the develo** optic tectum of medaka. J Radiat Res 50:487–494

    Article  PubMed  Google Scholar 

  • Zervas M, Millet S, Ahn S, Joyner AL (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, Y., Yamamoto, N., Hagio, H. (2022). Development of Diencephalon, Optic Tectum, and Cerebellum. In: Brain Development of Medaka Fish. Springer, Singapore. https://doi.org/10.1007/978-981-19-4324-9_11

Download citation

Publish with us

Policies and ethics

Navigation