Biofortification of Rice (Oryza sativa L.)

  • Chapter
  • First Online:
Biofortification in Cereals

Abstract

As a result of increased population, rising per capita incomes, and urbanisation, global agricultural production is increasing, and food demand is expected to continue growing over several decades. Approximately 60% of total calories consumed in develo** countries come straight from cereals, with values reaching 80% in develo** countries. Rice is the essential source of calories for humans amongst grains. Over half of the world’s population is fed on rice. More than 2 billion of them suffer from “hidden hunger,” as they do not consume enough nutrients or micronutrients in their regular diet. As part of a complete food systems approach, biofortification is an effective technique for nutrition enrichment, which refers to develo** a micronutrient-rich diet by utilising traditional breeding practices and sophisticated biotechnological tools. To enhance the profile of rice grain for biofortification-related properties, researchers must first understand the genetics of critical biofortification characteristics. The polishing procedure removes essential nutrients from white milled rice grains. As a result, seed-specific critical nutrient absorption is necessary. Significant increases in iron and zinc and many other essential minerals and provitamins are acquired in rice grain using the biofortification strategy. Most indica and japonica rice types have been biofortified over the world, giving them the titles of “high-iron rice,” “low-phytate rice,” “high-zinc rice,” and “high-carotenoid rice” or “golden rice”. Different techniques of rice biofortification, as well as their effects, have been explored in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Babili S, Beyer P (2005) Golden Rice–five years on the road–five years to go? Trends Plant Sci 10(12):565–573

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 8(7):e68161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai C, Twyman RM, Farré G, Sanahuja G, Christou P, Capell T, Zhu C (2011) A golden era—provitamin A enhancement in diverse crops. In Vitro Cell Develop Biol Plant 47(2):205–221

    Article  CAS  Google Scholar 

  • Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK (2013) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6:31. https://doi.org/10.1186/1939-8433-6-31

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodnar M, Konieczka P, Namiesnik J (2012) The properties, functions, and use of selenium compounds in living organisms. J Environ Sci Health C 30(3):225–252

    Article  CAS  Google Scholar 

  • Boonyaves K, Gruissem W, Bhullar NK (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol 90(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(1_suppl1):S31–S40

    Article  PubMed  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Secure 12:49–58

    Article  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1):1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Kutman UÁ (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69(1):172–180

    Article  Google Scholar 

  • Champagne ET, Wood DF, Juliano BO, Bechtel DB (2004) The rice grain and its gross composition. In: Champagne ET (ed) Rice Chemistry and Technology, Cereal. Chem, vol 3, pp 93–96

    Chapter  Google Scholar 

  • Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17(1):23–42

    Article  PubMed  Google Scholar 

  • Datta SK, Datta K, Parkhi V, Rai M, Baisakh N, Sahoo G et al (2007) Golden rice: introgression, breeding, and field evaluation. Euphytica 154(3):271–278

    Article  Google Scholar 

  • Dong Y, Zhang H, Hawthorn L, Ganther HE, Ip C (2003) Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res 63(1):52–59

    CAS  PubMed  Google Scholar 

  • Fawzi AFA, El-Fouly MM, Moubarak ZM (1993) The need of grain legumes for iron, manganese, and zinc fertilization under Egyptian soil conditions: effect and uptake of metabolites. J Plant Nutr 16(5):813–823

    Article  CAS  Google Scholar 

  • Ferguson LR, Harris PJ (1999) Protection against cancer by wheat bran: role of dietary fibre and phytochemicals. Eur J Cancer Prev 8:25

    Article  Google Scholar 

  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29(1):15–23

    Article  CAS  Google Scholar 

  • Ghosh S, Datta K, Datta SK (2019) Rice vitamins. In: Bao J (ed) Rice chemistry and technology, vol 7, 1st edn. Elsevier Inc./AACC International, Amsterdam/AACC International, pp 195–220

    Google Scholar 

  • Gómez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19(2):165–180

    Article  PubMed  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. BiochimicaetBiophysicaActa (BBA)-Molecular. Cell Res 1763(7):595–608

    CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid-induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736

    Article  CAS  PubMed  Google Scholar 

  • Hambidge M (2000) Human zinc deficiency. J Nutr 130(5):1344S–1349S

    Article  CAS  PubMed  Google Scholar 

  • Hao ZW, Xu XH, Wang DH (2005) Reductive denitrification of nitrate by scrap iron filings. J Zhejiang Univ Sci B 6(3):182

    Article  PubMed  PubMed Central  Google Scholar 

  • Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoa TTC, Al-Babili S, Schaub P, Potrykus I, Beyer P (2003) Golden Indica and Japonica rice lines amenable to deregulation. Plant Physiol 133(1):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Lutkenhaus J (2003) A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Mol Microbiol 47(2):345–355

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Maqsood MA, Rengel Z, Aziz T (2012) Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil 361(1):279–290

    Article  CAS  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K et al (2009) Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in the early growth of the seedlings. J Biol Chem 284(6):3470–3479

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Bashir K, Nishizawa NK (2011) Zn uptake and translocation in rice plants. Rice 4(1):21–27

    Article  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H et al (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58(11):2909–2915

    Article  CAS  PubMed  Google Scholar 

  • Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PLoS One 6(9):e24476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Wachi T, Yoshihira K, Nakagawa T, Ishikawa A, Takagi D et al (2013) Rice (Oryza Sativa L.) roots have iodate reduction activity in response to iodine. Front Plant Sci 4:227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettenburg AJ, Hanspach J, Abson DJ, Fischer J (2018) From disagreements to dialogue: unpacking the Golden Rice debate. Sustain Sci 13(5):1469–1482

    Article  PubMed  PubMed Central  Google Scholar 

  • Khush GS, Lee S, Cho JI, Jeon JS (2012) Biofortification of crops for reducing malnutrition. Plant Biotechnol Rep 6(3):195–202

    Article  Google Scholar 

  • Landberg R, Andersson AA, Åman P, Kamal-Eldin A (2009) Comparison of GC and colorimetry for the determination of alkylresorcinol homologues in cereal grains and products. Food Chem 113(4):1363–1369

    Article  CAS  Google Scholar 

  • Landini M, Gonzali S, Kiferle C, Tonacchera M, Agretti P, Dimida A et al (2012) Metabolic engineering of the iodine content in Arabidopsis. Sci Rep 2(1):1–6

    Article  Google Scholar 

  • Lawson PG, Daum D, Czauderna R, Meuser H, Härtling JW (2015) Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front Plant Sci 6:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150(2):786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Vasanthan T (2003) Hypochlorite oxidation of field pea starch and its suitability for noodle making using an extrusion cooker. Food Res Int 36(4):381–386

    Article  CAS  Google Scholar 

  • Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36(2):178–182

    Article  CAS  PubMed  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7(1):43–49

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9(3–7):695–713

    Article  CAS  Google Scholar 

  • Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166

    Article  Google Scholar 

  • Miedema H, Bothwell JH, Brownlee C, Davies JM (2001) Calcium uptake by plant cells–channels and pumps acting in concert. Trends Plant Sci 6(11):514–519

    Article  CAS  PubMed  Google Scholar 

  • Miedema H, Demidchik V, Véry AA, Bothwell JH, Brownlee C, Davies JM (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol 179(2):378–385

    Article  CAS  PubMed  Google Scholar 

  • Minhas AP, Tuli R, Puri S (2018) Pathway editing targets for thiamine biofortification in rice grains. Front Plant Sci 9:975

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Missana T, Alonso U, García-Gutiérrez M (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. J Colloid Interface Sci 334(2):132–138

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SR, Galavi M, Rezaei M (2013) Zinc (Zn) importance for crop production—a review. Int J Agron Plant Prod 4(1):64–68

    Google Scholar 

  • Nagashima S, Jirintai S, Takahashi M, Kobayashi T, Nishizawa T, Kouki T et al (2014) Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol 95(10):2166–2175

    Article  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286(7):5446–5454

    Article  CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Drake R (2005) Improving the nutritional value of Golden Rice through increased provitamin A content. Nat Biotechnol 23(4):482–487

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13(9):464–473

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Ali N, Gayen D, Datta SK, Datta K (2012) Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crops Food 3(4):310–316

    Article  PubMed  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306(1):57–67

    Article  CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S-88

    Article  Google Scholar 

  • Powell K (2007) Functional foods from biotech—and unappetizing prospect? Nat Biotechnol 25(5):525–531

    Article  CAS  PubMed  Google Scholar 

  • Rabbani S, Beyer P, Lintig JV, Hugueney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116(4):1239–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132(3):503S–505S

    Article  PubMed  Google Scholar 

  • Roda FA, Marques I, Batista-Santos P, Esquível MG, Ndayiragije A, Lidon FC et al (2020) Rice biofortification with Zinc and Selenium: a transcriptomic approach to understand mineral accumulation in flag leaves. Front Genet 11:543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini DK, Devi P, Kaushik P (2020) Advances in genomic interventions for wheat biofortification: A review. Agronomy 10(1):62

    Article  CAS  Google Scholar 

  • Schreiber M, Yuan A, Salkoff L (1999) Transplantable sites confer calcium sensitivity to BK channels. Nat Neurosci 2(5):416–421

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Saini DK, Kumar A, Kesh H, Kaushik P (2020) Breeding for biofortification traits in rice: means to eradicate hidden hunger. In: Agronomy-climate change & food security, p 35

    Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94(3):275–288

    Article  CAS  PubMed  Google Scholar 

  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores: in vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93(4):1497–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud JL, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R et al (2010) Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 332(1):19–30

    Article  CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J et al (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza Sativa L.): implications for the phytic acid biosynthetic pathway. Gene 405(1–2):55–64

    Article  CAS  PubMed  Google Scholar 

  • Takagi SI, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7(1–5):469–477

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Senora T, Shimo H, Ishikawa S, Arao T et al (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci 98(14):7922–7927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurber MD, Fahey JW (2009) Adoption of Moringa oleifera to combat under-nutrition viewed through the lens of the “Diffusion of Innovations” theory. Ecol Food Nutr 48(3):212–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari BK, O’donnell CP, Cullen PJ (2009) Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci Technol 20(3–4):137–145

    Article  CAS  Google Scholar 

  • Tucker G (2003) Nutritional enhancement of plants. Curr Opin Biotechnol 14(2):221–225

    Article  CAS  PubMed  Google Scholar 

  • Voogt W, Jackson WA (2010) Perchlorate, nitrate, and iodine uptake and distribution in lettuce (Lactuca Sativa L.) and potential impact on background levels in humans. J Agric Food Chem 58(23):12192–12198

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hong X, Hu K, Wang Y, Wang X, Du S et al (2017) Impaired magnesium protoporphyrin IX methyltransferase (ChlM) impedes chlorophyll synthesis and plant growth in rice. Front Plant Sci 8:1694

    Article  PubMed  PubMed Central  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60(15):4263–4274

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60(1–2):1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52(358):891–899

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE et al (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55(404):1927–1937

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593

    Article  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • Wurtzel ET, Cuttriss A, Vallabhaneni R (2012) Maize provitamin carotenoids, current resources, and future metabolic engineering challenges. Front Plant Sci 3:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu H, Hu N (2007a) Assembly of electroactive layer-by-layer films of myoglobin and small-molecular phytic acid. Electrochem Commun 9(5):1057–1061

    Article  CAS  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007b) Proteomic analysis of rice (Oryza Sativa) seeds during germination. Proteomics 7(18):3358–3368

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Römheld V, Marschner H (1994) Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza Sativa L.). Plant Soil 164(1):1–7

    Article  CAS  Google Scholar 

  • Yang XE, Chen WR, Feng Y (2007c) Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ Geochem Health 29(5):413–428

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    Article  CAS  PubMed  Google Scholar 

  • Zapata-Caldas E, Hyman G, Pachón H, Monserrate FA, Varela LV (2009) Identifying candidate sites for crop biofortification in Latin America: case studies in Colombia, Nicaragua and Bolivia. Int J Health Geogr 8(1):1–18

    Article  Google Scholar 

  • Zhang T, Huang Y (2012) Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008. J Sci Food Agric 92(8):1643–1652

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.K. et al. (2023). Biofortification of Rice (Oryza sativa L.). In: Deshmukh, R., Nadaf, A., Ansari, W.A., Singh, K., Sonah, H. (eds) Biofortification in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-4308-9_6

Download citation

Publish with us

Policies and ethics

Navigation