Part of the book series: Springer Theses ((Springer Theses))

  • 105 Accesses

Abstract

In this chapter, I will discuss the technology that increases the quality of the highly complex oligo libraries that is one of the most essential points for the efficient synthetic nucleic acids storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeom H et al (2020) Cell-free bacteriophage genome synthesis using low-cost sequence-verified array-synthesized oligonucleotides. ACS Synth Biol 9(6):1376–1384. https://doi.org/10.1021/acssynbio.0c00051

    Article  Google Scholar 

  2. Tian J et al (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432(7020):1050–1054. https://doi.org/10.1038/nature03151

    Article  ADS  Google Scholar 

  3. Ong LL et al (2017) Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552(7683):72–77. https://doi.org/10.1038/nature24648

    Article  ADS  Google Scholar 

  4. Organick L et al (2018) Random access in large-scale DNA data storage. Nat Biotechnol 36(3):242–248. https://doi.org/10.1038/nbt.4079

    Article  Google Scholar 

  5. Zhou Y et al (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509(7501):487–491. https://doi.org/10.1038/nature13166

    Article  ADS  Google Scholar 

  6. Bai X, Kim J, Kang S, Kim W, Shim H (2015) A novel human scFv library with non-combinatorial synthetic CDR diversity. PLoS ONE 10(10):1–18. https://doi.org/10.1371/journal.pone.0141045

    Article  Google Scholar 

  7. Ma S, Saaem I, Tian J (2012) Error correction in gene synthesis technology. Trends Biotechnol 30(3):147–154. https://doi.org/10.1016/j.tibtech.2011.10.002

    Article  Google Scholar 

  8. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11(5):499–507. https://doi.org/10.1038/nmeth.2918

    Article  Google Scholar 

  9. Ellington A, Pollard JD (2009) Introduction to the synthesis and purification of oligonucleotides. Curr Protoc Nucleic Acid Chem 38:1–22. https://doi.org/10.1002/0471142700.nca03cs00

  10. Pinto A, Chen SX, Zhang DY (2018) Simultaneous and stoichiometric purification of hundreds of oligonucleotides. Nat Commun 9(1):1–9. https://doi.org/10.1038/s41467-018-04870-w

    Article  ADS  Google Scholar 

  11. Wan W et al (2014) Error removal in microchip-synthesized DNA using immobilized MutS. Nucleic Acids Res 42(12):1–14. https://doi.org/10.1093/nar/gku405

    Article  ADS  Google Scholar 

  12. Fuhrmann M, Oertel W, Berthold P, Hegemann P (2005) Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage. Nucleic Acids Res 33(6):1–8. https://doi.org/10.1093/nar/gni058

    Article  Google Scholar 

  13. Carr PA, Park JS, Lee YJ, Yu T, Zhang S, Jacobson JM (2004) Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res 32(20):1–9. https://doi.org/10.1093/nar/gnh160

    Article  Google Scholar 

  14. Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32(8):2632–2641. https://doi.org/10.1093/nar/gkh599

    Article  Google Scholar 

  15. Lee H et al (2015) A high-throughput optomechanical retrieval method for sequence-verified clonal DNA from the NGS platform. Nat Commun 6. https://doi.org/10.1038/ncomms7073

  16. Matzas M et al (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat Biotechnol 28(12):1291–1294. https://doi.org/10.1038/nbt.1710

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansol Choi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, H. (2023). Synthetic Nucleic Acids Storage. In: Purifying and Indexing Technology for Nucleic Acids-Based Next Generation Storage Medium. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-19-4274-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4274-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4273-0

  • Online ISBN: 978-981-19-4274-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation