• 204 Accesses

Abstract

Active control has been approached with the proposed geometric design method. Previous chapters have provided detailed exposition and demonstrated that the proposal can be a systematic design methodology to active control towards performance limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Wei, X. **g, A comprehensive review on vibration energy harvesting: modeling and realization, Renewable & Sustainable Energy Reviews 2017, 74: 1-18.

    Google Scholar 

  2. N. Tran, M. Ghayesh, M. Arjomandi, Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement, International Journal of Engineering Science 2018, 127: 162-185.

    Google Scholar 

  3. S. Elias, V. Matsagar, Research developments in vibration control of structures using passive tuned mass dampers, Annual Reviews in Control 2017, 44: 129-156.

    Google Scholar 

  4. W. Tian, Z. Ling, W. Yu, J. Shi, A review of MEMS scale piezoelectric energy harvester, Applied Sciences 2018, 8(645): doi:https://doi.org/10.3390/app8040645

  5. A.R.M. Siddique, S. Mahmud, B.V. Heyst, A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms, Energy Conversion & Management 2015, 106: 728-747.

    Google Scholar 

  6. C. Mo, J. Davidson, Energy harvesting technologies for structural health monitoring, The 1st IEEE Conference on Technologies for Sustainability, 1–2 August, Portland, OR, USA, 2013.

    Google Scholar 

  7. M. Rhimi, N. Lajnef, Tunable energy harvesting from ambient vibrations in civil structures, Journal of Energy Engineering 2012, 138(4): 185-193.

    Google Scholar 

  8. G. Gatti, M.J. Brennan, M.G. Tehrani, D.J. Thompson, Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator, Mechanical Systems & Signal Processing 2016, 66-67: 785-792.

    Google Scholar 

  9. L. Janak, V. Singule, Energy harvesting for aerospace: application possibilities, The 16th International Conference on Mechatronics-Mechatronika (ME), pp. 183–187, 2014.

    Google Scholar 

  10. Y.M Choi, M.G. Lee, Y. Jeon, Wearabe biomechanical energy harvesting technologies, Energies 2017, 10, 1483-1499.

    Google Scholar 

  11. C. Dagdeviren, Z. Li, Z.L. Wang, Energy harvesting from the animal/human body for self-powered electronics, Annual Review in Biomedical Energies 2017, 19: 85–108.

    Google Scholar 

  12. F. Invernizzi, S. Dulio, M. Patrini, G. Guizzetti, P. Mustrarelli, Energy harvesting from human motion: materials and techniques, Chemical Society Review 2016, 45: 5455-5473.

    Google Scholar 

  13. J. Feenstra, J. Granstrom, H. Sodano, Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack, Mechanical Systems & Signal Processing 2008, 22: 721–734.

    Google Scholar 

  14. J.M. Renno, M.F. Daqaq, D.J. Inman, On the optimal energy harvesting from a vibration source, Journal of Sound & Vibration 2009, 320 (1–2): 386–405.

    Google Scholar 

  15. J. Scruggs, An optimal stochastic control theory for distributed energy harvesting networks, Journal of Sound & Vibration 2009, 320: 707–725.

    Google Scholar 

  16. A.H. Hosseinloo, T.L. Vu, K. Turitsyn, Optimal control strategies for efficient energy harvesting from ambient vibrations, ar**v:1508.04163  [cs.SY].

  17. A.G. Muthalif, N.D. Nordin, Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results, Mechanical Systems & Signal Processing 2015. 5455: 417–426.

    Google Scholar 

  18. X. Wang, X. Liang, G. Shu, S. Watkins, Coupling analysis of linear vibration energy Harvesting systems, Mechanical Systems & Signal Processing 2016, 7071: 428–444.

    Google Scholar 

  19. R.A. Rojas, A. Carcaterra, An approach to optimal semi-active control of vibration energy harvesting based on MEMS, Mechanical Systems & Signal Processing 2018, 107: 291-316.

    Google Scholar 

  20. X. **ong, S.O. Oyadiji, A general modal approach for the development of optimal multi-layer stacked vibration energy harvesters, Journal of Sound & Vibration 2014, 333: 5386–5411.

    Google Scholar 

  21. D. Saravanos, H. Wu, L. Tang, Y. Yang, C.K. Soh, A novel two-degrees-of-freedom piezoelectric energy harvester, Journal of Intelligent Material Systems and Structures 2012, 24: 357–368.

    Google Scholar 

  22. X. Tang, L. Zuo, Enhanced vibration energy harvesting using dual-mass systems, Journal of Sound & Vibration 2011, 330: 5199-5209.

    Google Scholar 

  23. S.J. Jang, E. Rustighi, M.J. Brennan, Y.P. Lee, H.J. Jung, Design of a 2DOF vibrational energy harvesting device, Journal of Intelligent Material Systems & Structures 2010, 22(4): 43–48.

    Google Scholar 

  24. S.M. Shahruz, Design of mechanical bandpass filters for energy scavenging: multidegree-of-freedom models, Journal of Vibration & Control 2008, 14: 753–768.

    Google Scholar 

  25. T. Yildirim, M. Ghayesh, W. Li, G. Alici, A review on performance enhancement techniques for ambient vibration energy harvesters, Renewable & Sustainable Energy Reviews 2017, 71: 435-449.

    Google Scholar 

  26. C.G. Cooley, Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics, Mechanical Systems & Signal Processing 2017, 94: 237-252.

    Google Scholar 

  27. H. **ao, X. Wang, S. John, A multi-degree of freedom piezoelectric vibration energy harvester with piezoelectric elements inserted between two nearby oscillators, Mechanical Systems & Signal Processing 2016, 68–69: 138–154.

    Google Scholar 

  28. X. **, Y. Wang, M. Xu, Z. Huang, Semi-analytical solution of random response for nonlinear vibration energy harvesters, Journal of Sound & Vibration 2015, 340: 267–282.

    Google Scholar 

  29. M. Panyam, R. Masana, M. Daqaq, On approximating the effective bandwidth of bi-stable energy harvesters, International Journal of Nonlinear Mechanics 2014, 67: 153–163.

    Google Scholar 

  30. H. Vocca, I. Neri, F. Travasso, L. Gammaitoni, Kinetic energy harvesting with bistable oscillators, Applied Energy 2012, 97: 771–776.

    Google Scholar 

  31. S. Rafique, Piezoelectric Vibration Energy Harvesting: Modeling & Experiments, Springer, 2018.

    Google Scholar 

  32. N. Bizon, N.M. Tabatabaei, F. Blaabjerg, E. Kurt (editors), Energy Harvesting & Energy Efficiency: Theory, Methods, and Applications, Lecture Notes in Energy 37, Springer, 2017.

    Google Scholar 

  33. S. Roundy, P. K. Wright, J. M. Rabaey, Energy Scavenging for Wireless Sensor Networks: with Special Focus on Vibrations, Springer, 2004.

    Google Scholar 

  34. W. Tian, Z. Ling, W. Yu, J. Shi, A review of MEMS scale piezoelectric energy harvester, Applied Sciences 2018, 8(645): doi:https://doi.org/10.3390/app8040645.

  35. H. Zhang, L.R. Corr, T. Ma, Issues in vibration energy harvesting, Journal of Sound & Vibration 2018, 421: 79-90.

    Google Scholar 

  36. B.L. Ooi, J.M. Gilbert, Design of wideband vibration-based electromagnetic generator by means of dual-resonator, Sensors & Actuators A: Physical 2014, 213: 9–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiqiang Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J. (2022). Energy Harvesting for Performance Limit. In: Active Vibration & Noise Control: Design Towards Performance Limit. Springer, Singapore. https://doi.org/10.1007/978-981-19-4116-0_5

Download citation

Publish with us

Policies and ethics

Navigation