Aerobic Wastewater Treatment Systems

  • Chapter
  • First Online:
Wastewater to Water

Abstract

The biological processes for treatment of wastewater can be classified into aerobic, anoxic and anaerobic systems. An aerobic treatment process takes place in the presence of oxygen, wherein the aerobic microorganisms convert organic matter present in the wastewater into carbon dioxide and new cell biomass. This chapter focuses on different aerobic processes used in wastewater treatment with special emphasis on suspended and attached growth aerobic treatment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fatah, M. A., Sherif, H. O., & Hawash, S. I. (2017). Design parameters for waste effluent treatment unit from beverages production. Ain Shams Engineering Journal., 8(3), 305–310. https://doi.org/10.1016/j.asej.2016.04.008

    Article  Google Scholar 

  • Ardern, E., & Lockett, W. T. (1914). Experiments on the oxidation of sewage without the aid of filters. Journal of the Society of Chemical Industry., 33(10), 523–539. https://doi.org/10.1002/jctb.5000331005

    Article  CAS  Google Scholar 

  • Arrojo, B., Mosquera-Corral, A., Garrido, J. M., & Méndez, R. (2004). Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, 38(14–15), 3389–3399. https://doi.org/10.1016/j.watres.2004.05.002

    Article  CAS  Google Scholar 

  • Arsalan, M., Khan, Z. M., Sultan, M., Ali, I., Shakoor, A., Mahmood, M. H., Ahmad, M., Shamshiri, R. R., Imran, M. A., & Khalid, M. U. (2021). Experimental investigation of a wastewater treatment system utilizing maize cob as trickling filter media. Fresenius Environmental Bulletin., 30(1), 148–157.

    CAS  Google Scholar 

  • Aslam, M. M. A., Khan, Z. M., Sultan, M., Niaz, Y., Mahmood, M. H., Shoaib, M., Shakoor, A., & Ahmad, M. (2017). Performance evaluation of trickling filter-based wastewater treatment system utilizing cotton sticks as filter media. Polish Journal of Environmental Studies, 26(5), 1955–1962. https://doi.org/10.15244/pjoes/69443

  • Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., & Heijnen, J. J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, 33(10), 2283–2290. https://doi.org/10.1016/S0043-1354(98)00463-1

    Article  CAS  Google Scholar 

  • de Bueno, R. F., Piveli, R.P., & Campos, F. (2019). Extended aeration activated sludge process operated under low dissolved oxygen concentration: Kinetic behavior of nitrifying heterotrophic and autotrophic bacteria. Engenharia Sanitaria e Ambiental, 24(4), 939–947. https://doi.org/10.1590/s1413-41522019134260

  • Buyukkamaci, N., & Koken, E. (2010). Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry. Science of the Total Environment, 408(24), 6070–6078. https://doi.org/10.1016/j.scitotenv.2010.08.045

    Article  CAS  Google Scholar 

  • Chan, Y. J., Chong, M. F., & Law, C. L. (2010). Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR). Journal of Environmental Management, 91(8), 1738–1746.

    Article  CAS  Google Scholar 

  • Choubert, J. M., Racault, Y., Grasmick, A., Beck, C., & Heduit, A. (2005). Maximum nitrification rate in activated sludge processes at low temperature: Key parameters, optimal value. European Water Management Online., 7(3), 1–13.

    Google Scholar 

  • Dan, N. H., Rene, E. R., & Le Luu, T. (2020). Removal of nutrients from anaerobically digested swine wastewater using an intermittent cycle extended aeration system. Frontiers in Microbiology., 3(1), 1–9. https://doi.org/10.3389/fmicb.2020.576438

    Article  Google Scholar 

  • Dan, N. H., Phe, T. T. M., Thanh, B. X., Hoinkis, J., & Le Luu, T. (2021). The application of intermittent cycle extended aeration systems (ICEAS) in wastewater treatment. Journal of Water Process Engineering, 40, 101909. https://doi.org/10.1016/j.jwpe.2020.101909

  • Du, R., Cao, S., Li, B., Wang, S., & Peng, Y. (2017). Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium O**dation (DEAMOX) in sequencing batch reactor. Chemosphere, 174, 399–407. https://doi.org/10.1016/J.CHEMOSPHERE.2017.02.013

  • Dutta, A., & Sarkar, S. (2015). Sequencing batch reactor for wastewater treatment: Recent advances. Current Pollution Reports, 1(31), 177–190. https://doi.org/10.1007/S40726-015-0016-Y

    Article  Google Scholar 

  • Eckenfelder, W. W. (1961). Trickling filtration design and performance. Journal of Sanitary Engineering Division, ASCE, 87(4), 33.

    Article  Google Scholar 

  • Eckenfelder, W. W., & Barnhart, E. (1963). Performance of a high-rate trickling filter using selected media. Journal of Water Pollution Control Federation, 35, 535.

    Google Scholar 

  • Eckenfelder, W. W., & Ford, D. L. (1970). Water pollution control experimental procedures for process design (pp. 173–183). Jenkins Publishing Co.

    Google Scholar 

  • Eckenfelder, W. W. (2000). Industrial water pollution control. McGraw-Hill International.

    Google Scholar 

  • Farzadkia, M., Vanani, A.F., Golbaz, S., Sajadi, H.S., & Bazrafshan, E. (2016). Characterization and evaluation of treatability of wastewater generated in Khuzestan livestock slaughterhouses and assessing of their wastewater treatment systems. Global Nest Journal, 18(1), 108–118. https://doi.org/10.30955/gnj.001716

  • Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The “House of Biofilm Cells.” Journal of Bacteriology, 189(22), 7945–7947. https://doi.org/10.1128/JB.00858-07

    Article  CAS  Google Scholar 

  • Forbis-Stokes, A. A., Rocha-Melogno, L., & Deshusses, M. A. (2018). Nitrifying trickling filters and denitrifying bioreactors for nitrogen management of high-strength anaerobic digestion effluent. Chemosphere, 204, 119–129. https://doi.org/10.1016/j.chemosphere.2018.03.137

    Article  CAS  Google Scholar 

  • Godoy-Olmos, S., Martínez-Llorens, S., Tomás-Vidal, A., & Jover-Cerdá, M. (2016). Influence of filter medium type, temperature and ammonia production on nitrifying trickling filters performance. Journal of Environmental Chemical Engineering., 4(1), 328–340. https://doi.org/10.1016/j.jece.2015.11.023

    Article  CAS  Google Scholar 

  • Hatami, B., Ebrahimi, A., Ehrampoush, M. H., Salmani, M. H., Dalvand, A., Pirmoradi, N., Angelidaki, I., Fotidis, I. A., & Mokhtari, M. (2021). Recovery of intermittent cycle extended aeration system sludge through conversion into biodiesel by in-situ transesterification. Renewable Energy, 163, 56–65. https://doi.org/10.1016/j.renene.2020.08.116

    Article  CAS  Google Scholar 

  • Henze, M., & Harremoes, P. (1983). Anaerobic treatment of wastewater in fixed film reactors: A literature review. Water Science and Technology., 15(9), 1–101. https://doi.org/10.2166/wst.1983.0161

    Article  CAS  Google Scholar 

  • Jafarinejad, S. (2017). Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation. Applied Water Science., 7(3), 2513–2521. https://doi.org/10.1007/s13201-016-0446-8

    Article  CAS  Google Scholar 

  • Jagaba, A. H., Kutty, S. R. M., Lawal, I. M., Abubakar, S., Hassan, I., Zubairu, I., Umaru, I., Abdurrasheed, A. S., Adam, A. A., Ghaleb, A. A. S., Almahbashi, N. M. Y., Al-dhawi, B. N. S., & Noor, A. (2021). Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. Journal of Environmental Management., 282, 111946. https://doi.org/10.1016/J.JENVMAN.2021.111946

    Article  CAS  Google Scholar 

  • Joshua Amarnath, D., Thamilamudhan, R., & Rajan, S. (2015). Comparative study on wastewater treatment using activated sludge process and extended aeration sludge process. Journal of Chemical and Pharmaceutical Research., 7(1), 798–802.

    CAS  Google Scholar 

  • Kołecka, K., Gajewska, M., Cytawa, S., Stepnowski, P., & Caban, M. (2020). Is sequential batch reactor an efficient technology to protect recipient against non-steroidal anti-inflammatory drugs and paracetamol in treated wastewater? Bioresource Technology., 318, 124068. https://doi.org/10.1016/J.BIORTECH.2020.124068

    Article  Google Scholar 

  • Li, H., Chen, Y., Gu, G., & Liu, Y. (2008). Phosphorous removal in intermittent cycle extended aeration system wastewater treatment plant: Effect of temperature, in: 2nd international conference on bioinformatics and biomedical engineering. ICBBE, 4(1), 1–12. https://doi.org/10.1109/ICBBE.2008.1075

  • Lim, J. X., & Vadivelu, V. M. (2014). Treatment of agro based industrial wastewater in sequencing batch reactor: Performance evaluation and growth kinetics of aerobic biomass. Journal of Environmental Management, 146, 217–225. https://doi.org/10.1016/J.JENVMAN.2014.07.023

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, Z. W., & Tay, J. H. (2005). A unified theory for upscaling aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 23(5), 335–344. https://doi.org/10.1016/J.BIOTECHADV.2005.04.001

    Article  CAS  Google Scholar 

  • Liu, L., Li, N., Tao, C., Zhao, Y., Gao, J., Huang, Z., Zhang, J., Gao, J., Zhang, J., & Cai, M. (2021). Nitrogen removal performance and bacterial communities in zeolite trickling filter under different influent C/N ratios. Environmental Science and Pollution Research, 28(4), 15909–15922. https://doi.org/10.1007/s11356-020-11776-y

    Article  CAS  Google Scholar 

  • Mancini, J. L, & Barnhart E. L. (1968). Industrial wastewater treatment in aerated lagoon. In E. F. Gloyna, & W.W. Ekenfelder Jr (Eds.), Advances in water quality improvement. University of Texas Press

    Google Scholar 

  • Mareai, B. M., Fayed, M., Aly, S. A., & Elbarki, W. I. (2020). Performance comparison of phenol removal in pharmaceutical wastewater by activated sludge and extended aeration augmented with activated carbon. Alexandria Engineering Journal, 59(6), 5187–5196. https://doi.org/10.1016/j.aej.2020.09.048

    Article  Google Scholar 

  • McKee, K. P., Vance, C. C., & Karthikeyan, R. (2016). Biological manganese oxidation by Pseudomonas putida in trickling filters. Journal of Environmental Science and Health: Part A Toxic/hazardous Substances and Environmental Engineering., 51(7), 523–535. https://doi.org/10.1080/10934529.2016.1141618

    Article  CAS  Google Scholar 

  • Md Hafiz, M. F. U. B, Mohamed Kutty, S. R. B., & Hakmi, S. N. B. S. I. (2021). Impact of treating ammonia-nitrogen contamination from chemical fertilizer plant using extended aeration activated sludge system. In: Lecture notes in civil engineering, vol 132. Springer. https://doi.org/10.1007/978-981-33-6311-3_19

  • Metcalf, W., & Eddy, C. (2003). Metcalf and eddy wastewater engineering: Treatment and reuse. Wastewater engineering: Treatment and reuse. McGraw Hill.

    Google Scholar 

  • Mirbagheri, S. A., Ebrahimi, M., & Mohammadi, M. (2014). Optimization method for the treatment of Tehran petroleum refinery wastewater using activated sludge contact stabilization process. Desalination and Water Treatment, 52(3), 156–163. https://doi.org/10.1080/19443994.2013.794105

    Article  CAS  Google Scholar 

  • Nelson, M. J., Nakhla, G., & Zhu, J. (2017). Fluidized-bed bioreactor applications for biological wastewater treatment: A review of research and developments. Engineering, 3(3), 330–342.

    Article  Google Scholar 

  • Ni, B.-J., **e, W.-M., Liu, S.-G., Yu, H.-Q., Wang, Y.-Z., Wang, G., & Dai, X.-L. (2009). Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Research, 43(3), 751–761.

    Article  CAS  Google Scholar 

  • Olmos, S., López-Castellanos, J., & Bayo, J. (2019). Are advanced wastewater treatment technologies a solution for total removal of microplastics in treated effluents? WIT Transactions on Ecology and the Environment, 229(3), 109–116. https://doi.org/10.2495/WRM190111

    Article  Google Scholar 

  • Rana, K., & Shah, M. (2014). Extended aeration activated sludge process of pharmaceutical wastewater. International Journal of Advanced Engineering Research and Science, 1(2), 89–92.

    Google Scholar 

  • Rehman, A., Ayub, N., Naz, I., Perveen, I., & Ahme, S. (2020). Effects of hydraulic retention time (HRT) on the performance of a pilot-scale trickling filter system treating low-strength domestic wastewater. Polish Journal of Environmental Studies, 29(4), 249–259. https://doi.org/10.15244/pjoes/98998

  • Reynolds, T. D., & Yang, J. T. (1966). Model of the completely mixed activated sludge process. In Proceedings of the 21st industrial waste conference. Purdue University, Engineering Extension Series No. 121, p. 696.

    Google Scholar 

  • Reynolds, T. D., & Richards, P. A. (1996). Unit operations and processes in environmental engineering. PWS Publishing company.

    Google Scholar 

  • Sarti, A., Garcia, M. L., Zaiat, M., & Foresti, E. (2007). Domestic sewage treatment in a pilot-scale anaerobic sequencing batch biofilm reactor (ASBBR). Resources, Conservation and Recycling, 51(1), 237–247. https://doi.org/10.1016/J.RESCONREC.2006.09.008

    Article  Google Scholar 

  • Schwarzenbeck, N., Borges, J., & Wilderer, P. (2005). Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Applied Microbiology and Biotechnology, 66(6), 711–718.

    Article  CAS  Google Scholar 

  • Shieh, W. K., & Li, C. T. (1989). Performance and kinetics of aerated fluidized bed biofilm reactor. Journal of Environmental Engineering., 115(1), 65–79.

    Article  CAS  Google Scholar 

  • Su, J. J., Huang, J. F., Wang, Y. L., & Hong, Y. Y. (2018). Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production. Poultry Science., 97(11), 3870–3877. https://doi.org/10.3382/PS/PEY251

    Article  CAS  Google Scholar 

  • Tanikawa, D., Fujise, R., Kondo, Y., Fujihira, T., & Seo, S. (2018). Elimination of hydrogen sulfide from biogas by a two-stage trickling filter system using effluent from anaerobic–aerobic wastewater treatment. International Biodeterioration and Biodegradation., 130, 98–101. https://doi.org/10.1016/j.ibiod.2018.04.007

    Article  CAS  Google Scholar 

  • Travers, S., & Lovett, D. (1984). Activated sludge treatment of abattoir wastewater—II: Influence of dissolved oxygen concentration. Water Research, 18(4), 435–439.

    Article  CAS  Google Scholar 

  • U.S. Epa. (2000). United States environmental protection agency. Wastewater Technology Fact Sheet: Wetlands: Subsurface Flow (EPA 832-F-00-023).

    Google Scholar 

  • UNEP. (2018). United Nations environmental program. Technical University of Denmark (DTU), Copenhagen, Denmark.

    Google Scholar 

  • Valta, K., Damala, P., Angeli, E., Antonopoulou, G., Malamis, D., & Haralambous, K. J. (2017). Current treatment technologies of cheese whey and wastewater by Greek cheese manufacturing units and potential valorisation opportunities. Waste and Biomass Valorization, 8(4), 1649–1663. https://doi.org/10.1007/s12649-017-9862-8

  • Von Sperling, M. (2015). Activated sludge and aerobic biofilm reactors. IWA Publishing. https://doi.org/10.2166/9781780402123

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makarand M. Ghangrekar .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghangrekar, M.M. (2022). Aerobic Wastewater Treatment Systems. In: Wastewater to Water. Springer, Singapore. https://doi.org/10.1007/978-981-19-4048-4_10

Download citation

Publish with us

Policies and ethics

Navigation