Human Embryonic Stem Cells as a Therapy for Alzheimer’s Disease

  • Reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research
  • 768 Accesses

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive decline in neurocognitive performance with symptoms such as neuroinflammation, decreased hippocampus volume, learning and memory issues, as well as problems with visuospatial functions. The mechanisms involved in the pathogenesis of AD include aggregation of the amyloid precursor protein, activation of cholinesterases, formation of senile plaques, hyperphosphorylation of tau protein, and activation of microglia. Several therapeutic strategies have been adopted toward the management of AD, especially stem cell technology. This chapter describes human embryonic stem cells as a viable therapy for the management of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya MM, Christie LA, Lan ML, Donovan PJ, Cotman CW, Fike JR, Limoli CL (2009) Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc Natl Acad Sci 106:19150–19155

    Article  CAS  Google Scholar 

  • Adib S, Tiraihi T, Darvishi M, Taheri T, Kazemi H (2015) Cholinergic differentiation of neural stem cells generated from cell aggregates-derived from human bone marrow stromal cells. Tissue Eng Regen Med 12(1):43–52

    Article  CAS  Google Scholar 

  • Ager RR, Davis JL, Agazaryan A, Benavente F, Poon WW, La Ferla FM, Blurton-Jones M (2015) Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 25:813–826

    Article  CAS  Google Scholar 

  • Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145

    Article  CAS  Google Scholar 

  • Alzheimer’s Association (2015) Alzheimer’s disease facts and figures. Alzheimers Dement 11:332

    Google Scholar 

  • Alzheimer’s Association (2020) Alzheimer’s disease facts and figures. Alzheimers Dement 16(3):391–460

    Google Scholar 

  • Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260

    Article  CAS  Google Scholar 

  • Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494:100–104

    Article  CAS  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    Article  CAS  Google Scholar 

  • Bae JS, ** HK, Lee JK, Richardson JC, Carter JE (2013) Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-b deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer’s disease. Curr Alzheimer Res 10:524–531

    Article  CAS  Google Scholar 

  • Bali P, Lahiri DK, Banik A, Nehru B, Anand A (2017) Potential for stem cells therapy in Alzheimer’s disease: do neurotrophic factors play critical role? Curr Alzheimer Res 14(2)

    Google Scholar 

  • Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long -term memory storage. Proc Natl Acad Sci 105(7):2711–2716

    Article  CAS  Google Scholar 

  • Berger T, Lee H, Young AH, Aarsland D, Thuret S (2020) Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol Med 26:803–818

    Article  Google Scholar 

  • Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M et al (2007) Wnt induces LRP6 signalosomes and promotes disheveled-dependent LRP6 phosphorylation. Science 316:1619–1622

    Article  CAS  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106:13594–13599

    Article  CAS  Google Scholar 

  • Blurton-Jones M, Spencer B, Michael S, Castello NA, Agazaryan AA, Davis JL, Müller FJ, Loring JF, Masliah E, LaFerla FM (2014) Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 5:46

    Article  Google Scholar 

  • Bruni AC, Bernardi L, Gabelli C (2020) From beta amyloid to altered proteostasis in Alzheimer’s disease. Ageing Res Rev 64:101–126

    Article  Google Scholar 

  • Cai J, Rao M (2007) Stem and precursor cells for transplant therapy. In: Halberstadt C, Emerich DF (eds) Cellular transplantation. From laboratory to clinic, pp 29–42

    Chapter  Google Scholar 

  • Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimers Dis 57:1087–1103

    Article  CAS  Google Scholar 

  • Cajánek L, Ribeiro D, Liste I, Parish CL, Bryja V, Arenas E (2009) Wnt/betacatenin signaling blockade promotes neuronal induction and dopaminergic differentiation in embryonic stem cells. Stem Cells 27(12):2917–2927

    Article  Google Scholar 

  • Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6(6):1445–1451

    Article  Google Scholar 

  • Caricasole A, Copani A, Caraci F, Aronica E, Rozemuller AJ, Caruso A et al (2004) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci 24:6021–6027

    Article  CAS  Google Scholar 

  • Chen JX, Yan SS (2010) Role of mitochondrial amyloid-beta in Alzheimer’s disease. J. Alzheimers Dis 20(Suppl 2):S569–S578

    Article  Google Scholar 

  • Chen SQ, Cai Q, Shen YY, Wang PY, Li MH, Teng GY (2014) Neural stem cell transplantation improves spatial learning and memory via neuronal regeneration in amyloid-b precursor protein/presenilin 1/tau triple transgenic mice. Am J Alzheimers Dis Other Dement 29:142–149

    Article  Google Scholar 

  • Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN Neurol 2:e00045

    Google Scholar 

  • Choi SS, Lee SR, Kim SU, Lee HJ (2014) Alzheimer’s disease and stem cell therapy. Exp Neurobiol 23(1):45–52

    Article  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  Google Scholar 

  • Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    Article  CAS  Google Scholar 

  • Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 24:183–209

    Article  CAS  Google Scholar 

  • Colombo E, Giannelli SG, Galli R, Tagliafico E, Foroni C, Tenedini E, Ferrari S, Ferrari S, Corte G, Vescovi A, Cossu G, Broccoli V (2006) Embryonic stem-derived versus somatic neural stem cells: a comparative analysis of their developmental potential and molecular phenotype. Stem Cells 24:825–834

    Article  Google Scholar 

  • Cotrim C, Fabris V, Doria M, Lindberg K, Gustafsson J-Å, Amado F, Lanari C, Helguero L (2013) Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells. Oncogene 32(19):2390–2402

    Article  CAS  Google Scholar 

  • Das D, Lanner F, Main H, Andersson ER, Bergmann O, Sahlgren C, Heldring N, Hermanson O, Hansson EM, Lendahl U (2010) Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells. Dev Biol 348:153–166

    Article  CAS  Google Scholar 

  • Delbeuck X, Van der Linden M, Collette F (2003) Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev 13:79–92

    Article  CAS  Google Scholar 

  • Dominguez G, Dagnas M, Decorte L, Vandesquille M, Belzung C, Beracochea D, Mons N (2016) Rescuing prefrontal cAMP-CREB pathway reverses working memory deficits during withdrawal from prolonged alcohol exposure. Brain Struct Funct 221(2):865–877

    Article  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2016) Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 291:6714–6722

    Article  CAS  Google Scholar 

  • Engelhardt B, Liebner S (2014) Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 355:687–699

    Article  CAS  Google Scholar 

  • España J, Valero J, Miñano-Molina AJ, Masgrau R, Martín E, Guardia-Laguarta C, Lleó A, Giménez-Llort L, Rodríguez-Alvarez J, Saura CA (2010) β -Amyloid disrupts activity -dependent gene transcription required for memory through the CREB coactivator CRTC1. J Neurosci 30(28):9402–9410

    Article  Google Scholar 

  • Fahnestock M (2011) Brain -derived neurotrophic factor: the link between amyloid -β and memory loss. Future Neurol 6(5):627–639

    Article  CAS  Google Scholar 

  • Fang Y, Gao T, Zhang B, Pu J (2018) Recent advances: decoding Alzheimer’s disease with stem cells. Front Aging Neurosci 10:77

    Article  Google Scholar 

  • Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111:769–781

    Article  CAS  Google Scholar 

  • Fouad GI (2019) Stem cells as a promising therapeutic approach for Alzheimer’s disease: a review. Fouad Bull Nat Res Centre 43:52

    Article  Google Scholar 

  • Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  CAS  Google Scholar 

  • Fumagalli F, Racagni G, Riva M (2006) The expanding role of BDNF: a therapeutic target for Alzheimer’s disease? Pharmacogenomics J 6(1):8

    Article  CAS  Google Scholar 

  • Gadadhar A, Marr R, Lazarov O (2011) Presenilin-1 regulates neural progenitor cell differentiation in the adult brain. J Neurosci 31:2615–2623

    Article  CAS  Google Scholar 

  • Garcia KO, Ornellas FLM, Martin PKM, Patti CL et al (2014) Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease. Front Aging Neurosci 6:30

    Article  Google Scholar 

  • Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M et al (2016) IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron 89:583–597

    Article  CAS  Google Scholar 

  • Goings GE, Sahni V, Szele FG (2004) Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res 996(2):213–226

    Article  CAS  Google Scholar 

  • Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433

    Article  CAS  Google Scholar 

  • Guo H, Cheng Y, Wang C, Wu J, Zou Z, Niu B et al (2017) FFPM, a PDE4 inhibitor, reverses learning and memory deficits in APP/PS1 transgenic mice via cAMP/PKA/CREB signaling and anti-inflammatory effects. Neuropharmacology 116:260–269

    Article  CAS  Google Scholar 

  • Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4)

    Google Scholar 

  • Haughey NJ, Liu D, Nath A, Borchard AC, Mattson MP (2002) Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer’s disease. NLM 1(2):125–135

    CAS  Google Scholar 

  • Hernandez F, Lucas JJ, Avila J (2013) GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S141–S144

    Google Scholar 

  • Hoornaert CJ, Le Blon D, Quarta A (2017) Concise review: innate and adaptive immune recognition of allogeneic and xenogeneic cell transplants in the central nervous system. Stem Cells Transl Med 6(5):1434–1441

    Article  Google Scholar 

  • Horgusluoglu E, Nudelman K, Nho K, Saykin AJ (2017) Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. Am J Med Genet B Neuropsych Genet 174:93–112

    Article  CAS  Google Scholar 

  • Hoshi M, Takashima A, Noguchi K, Murayama M, Sato M, Kondo S, Saitoh Y, Ishiguro K, Hoshino T, Imahori K (1996) Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc Natl Acad Sci U S A 93:2719–2723

    Article  CAS  Google Scholar 

  • Israel MA, Yuan SH, Bardy C et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220

    Article  CAS  Google Scholar 

  • Jackstadt R, Hodder MC, Sansom OJ (2020) WNT and β-catenin in cancer: genes and therapy. Annu Rev Cancer Biol Ther 4:177–196

    Article  Google Scholar 

  • Jang MH, Bonaguidi MA, Kitabatake Y, Sun J, Song J, Kang E et al (2013) Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell 12:215–223

    Article  CAS  Google Scholar 

  • Jia L, Piña-Crespo J, Li Y (2019) Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain 12:104

    Article  Google Scholar 

  • ** K, Galvan V (2007) Endogenous neural stem cells in the adult brain. J Neuroimmune Pharmacol 2:236–242

    Article  Google Scholar 

  • ** K, Zhu Y, Sun Y, Mao XO, **e L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci 99(18):11946–11950

    Article  CAS  Google Scholar 

  • Kent SA, Spires-Jones TL, Durrant CS (2020) The physiological roles of tau and Ab: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol 140:417–447

    Article  CAS  Google Scholar 

  • Khan S.S. and Bloom G.S. (2016). Tau: the center of a signaling nexus in Alzheimer’s disease. Front Neurosci;

    Google Scholar 

  • Kim HT, Kim IS, Lee IS, Lee JP, Snyder EY, Park KI (2006) Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committed. Exp Neurol 199(1):222–235

    Article  CAS  Google Scholar 

  • Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ et al (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-b plaques. Cell Death Differ 19:680–691

    Article  CAS  Google Scholar 

  • Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Choi SJ, Kwon H, Yun HJ, Lee JM, Kim ST, Choe YS, Lee KH, Na DL (2015) Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase 1 clinical trial. Alzheimers Dement (NY) 1:95–102

    Article  Google Scholar 

  • Klinge PM, Harmening K, Miller MC, Heile A et al (2011) Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer’s disease. Neurosci Lett 497:6–10

    Article  CAS  Google Scholar 

  • Kumar A, Singh A, Ekavali A (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203

    Article  CAS  Google Scholar 

  • Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC et al (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12:1097–1105

    Article  CAS  Google Scholar 

  • Kwon EM, Connelly JP, Hansen NF, Donovan FX, Winkler T, Davis BW, Alkadi H, Chandrasekharappa SC, Dunbar CE, Mullikin JC (2017) iPSCs and fibroblast subclones from the same fibroblast population contain comparable levels of sequence variations. Proc Natl Acad Sci U S A 114:1964–1969

    Article  CAS  Google Scholar 

  • Lee SJ, Chung YH, Joo KM, Lim HC, Jeon GS, Kim D, Lee WB, Kim YS, Cha CI (2006) Age-related changes in glycogen synthase kinase 3beta (GSK3beta) immunoreactivity in the central nervous system of rats. Neurosci Lett 409:134–139

    Article  CAS  Google Scholar 

  • Lee H, Shamy GA, Elkabetz Y (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motor neurons. Stem Cells 25(8):1931–1939

    Article  CAS  Google Scholar 

  • Lee Y, Kim J, Jang S, Oh S (2013) Administration of phytoceramide enhances memory and upregulates the expression of pCREB and BDNF in hippocampus of mice. Biomol Ther 21(3):229–233

    Article  CAS  Google Scholar 

  • Lee IS, Jung K, Kim IS, Lee H, Kim M, Yun S, Hwang K, Shin JE, Park KI (2015) Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener 10:38

    Article  Google Scholar 

  • Li B, Yamamori H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, Chen S et al (2008) Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 67:78–84

    Article  CAS  Google Scholar 

  • Li X, Zhu H, Sun X, Zuo F, Lei J, Wang Z, Bao X, Wang R (2016) Human neural stem cell transplantation rescues cognitive defects in APP/PS1 model of Alzheimer’s disease by enhancing neuronal connectivity and metabolic activity. Front Aging Neurosci 8:282

    Article  Google Scholar 

  • Liber D, Domaschenz R, Holmqvist PH, Mazzarella L, Georgiou A, Leleu M, Fisher AG, Labosky PA, Dillon N (2010) Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell Stem Cell 7(1):114–126

    Article  CAS  Google Scholar 

  • Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (2018) Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 135:311–336

    Article  CAS  Google Scholar 

  • Liu XY, Yang LP, Zhao L (2020) Stem cell therapy for Alzheimer’s disease. World J Stem Cells 12:787–802

    Article  CAS  Google Scholar 

  • Lowell S, Benchoua A, Heavey B, Smith AG (2006) Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 4:e121

    Article  Google Scholar 

  • Lu B, Wang KH, Nose A (2009) Molecular mechanisms underlying neural circuit formation. Curr Opin Neurobiol 19:162–167

    Article  CAS  Google Scholar 

  • Lu MH, Ji WL, Chen H, Sun YY, Zhao XY, Wang F, Shi Y, Hu YN, Liu BX, Wu JW (2021) Intranasal transplantation of human neural stem cells ameliorates Alzheimer’s disease-like pathology in a mouse model. Front Aging Neurosci 13:650103

    Article  CAS  Google Scholar 

  • Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, Hersh LB, Thiele DL (2003) Amyloid-beta peptide levels in brain are inversely correlated with insulin activity levels in vivo. Proc Natl Acad Sci U S A 100:6221–6226

    Article  CAS  Google Scholar 

  • Ming G, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  Google Scholar 

  • Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212(4):379–387. https://doi.org/10.1083/jcb.201511036

  • Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H (2009) Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 78(2–3):59–68

    Article  CAS  Google Scholar 

  • Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999

    Article  CAS  Google Scholar 

  • Oh SH, Kim HN, Park HJ, Shin JY, Lee PH (2015) Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer’s disease model. Cell Transplant 24:1097–1109

    Article  Google Scholar 

  • Pallas M, Camins A (2006) Molecular and biochemical features in Alzheimer’s disease. Curr Pharm Des 12

    Google Scholar 

  • Parr C, Mirzaei N, Christian M, Sastre M (2015) Activation of the Wnt/beta-catenin pathway represses the transcription of the beta-amyloid precursor protein cleaving enzyme (BACE1) via binding of T-cell factor-4 to BACE1 promoter. FASEB J 29:623–635

    Article  CAS  Google Scholar 

  • Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93(6):1412–1421

    Article  CAS  Google Scholar 

  • Penney J, Ralvenius WT, Tsai LH (2020) Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol Psychiatry 25:148–167

    Article  Google Scholar 

  • Perneczky R, Alexopoulos P (2014) Cerebrospinal fluid BACE1 activity and markers of amyloid precursor protein metabolism and axonal degeneration in Alzheimer’s disease. Alz & Dem 10(0)

    Google Scholar 

  • Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJ, Bujanda L, Banales JM (2019) Wnt–β-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol 16(2):121–136

    Article  CAS  Google Scholar 

  • Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10:253–263

    Article  CAS  Google Scholar 

  • Popovic N, Brundin P (2006) Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm 314

    Google Scholar 

  • Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB (2011) Downregulation of CREB expression in Alzheimer’s brain and in Aβ -treated rat hippocampal neurons. Mol Neurodegener 6(1):60

    Article  CAS  Google Scholar 

  • Qin W, Haroutunian V, Katsel P, Cardozo CP, Ho L, Buxbaum JD, Pasinetti GM (2009) PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 66:352–361

    Article  Google Scholar 

  • Querfurth HW, La Ferla FM (2010) Alzheimer’s disease. The New Eng J Med 362(4)

    Google Scholar 

  • Ratajczak MZ, Jadczyk T, Pedziwiatr D, Wojakowski W (2014) New advances in stem cell research: practical implications for regenerative medicine. Pol Arch Med Wewn 124:417–426

    Google Scholar 

  • Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates JR, Montminy M (2007) Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J 26(12):2880–2889

    Article  CAS  Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19(12):1134–1140

    Article  CAS  Google Scholar 

  • Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, Spiegelman BM (2007) A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci U S A 104:7933–7938

    Article  CAS  Google Scholar 

  • Rosa E, Fahnestock M (2015) CREB expression mediates amyloid β -induced basal BDNF downregulation. Neurobiol Aging 36(8):2406–2413

    Article  CAS  Google Scholar 

  • Rossini M, Gatti D, Adami S (2013) Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 93(2):121–132

    Article  CAS  Google Scholar 

  • Scearce-Levie K, Sanchez PE, Lewcock JW (2020) Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 19:447–462

    Article  CAS  Google Scholar 

  • Seib DR, Corsini NS, Ellwanger K, Plaas C, Mateos A, Pitzer C et al (2013) Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 12:204–214. https://doi.org/10.1016/j.stem.2012.11.010

  • Serafino A, Giovannini D, Rossi S, Cozzolino M (2020) Targeting the Wnt/beta-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov 15:803–822

    Article  CAS  Google Scholar 

  • Shan ZY, Shen JL, Li QM, Wang Y, Huang XY, Guo TY, Liu HW, Lei L, ** LH (2008) pCREB is involved in neural induction of mouse embryonic stem cells by RA. Anat Rec (Hoboken) 291:519–526

    Article  CAS  Google Scholar 

  • Shihabuddin LS, Aubert I (2010) Stem cell transplantation for neurometabolic and neurodegenerative diseases. Neuropharmacology 58(6):845–854

    Article  CAS  Google Scholar 

  • Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114:108765

    Article  CAS  Google Scholar 

  • Si Z, Wang X, Kang Y, Wang X, Sun C, Li Y, Xu J, Wu J, Zhang Z, Li L (2020) Heme oxygenase 1 inhibits adult neural stem cells proliferation and survival via modulation of Wnt/b-catenin signaling. J Alzheimers Dis 76:623–641

    Article  CAS  Google Scholar 

  • Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, Donahue JE, Johanson CE (2010) Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging. J Neuropathol Exp Neurol 69:1034–1043

    Article  CAS  Google Scholar 

  • Song JH, Yu JT, Tan L (2015) Brain -derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol 52(3):1477–1493

    Article  CAS  Google Scholar 

  • Song N, Scholtemeijer M, Shah K (2020) Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci 41:653–664

    Article  CAS  Google Scholar 

  • Suzuki A, Fukushima H, Mukawa T et al (2011) Upregulation of CREB-mediated transcription enhances both short- and long-term memory. J Neurosci 31(24):8786–8802

    Article  CAS  Google Scholar 

  • Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59(1):201–220

    Article  CAS  Google Scholar 

  • Tapia-Rojas C, Burgos PV, Inestrosa NC (2016) Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of amyloid-beta (Abeta) 42 peptides. J Neurochem 139:1175–1191

    Article  CAS  Google Scholar 

  • Telias M, Ben-Yosef D (2015) Neural stem cell replacement: a possible therapy for neurodevelopmental disorders? Neural Regen Res 10:180–182

    Article  Google Scholar 

  • Theus MH, Wei L, Francis K, Yu SP (2006) Critical roles of Src family tyrosine kinases in excitatory neuronal differentiation of cultured embryonic stem cells. Exp Cell Res 312:3096–3107

    Article  CAS  Google Scholar 

  • Toda T, Gage FH (2018) Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res 373:693–709

    Article  Google Scholar 

  • Tonge PD, Andrews PW (2010) Retinoic acid directs neuronal differentiation of human pluripotent stem cell lines in a non-cell-autonomous manner. Differentiation 80:20–30

    Article  CAS  Google Scholar 

  • van Marum RJ (2008) Current and future therapy in Alzheimer’s disease. Fundam Clin Pharmacol 22(3):265–274

    Article  Google Scholar 

  • Varela-Nallar L, Arredondo SB, Tapia-Rojas C, Hancke J, Inestrosa NC (2015) Andrographolide stimulates neurogenesis in the adult hippocampus. Neural Plast 935403

    Google Scholar 

  • Walker D, Lue LF (2005) Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer’s disease and other neurodegenerative diseases. J Neurosci Res 81:412–425

    Article  CAS  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    Article  CAS  Google Scholar 

  • Wang Q, Matsumoto Y, Shindo T, Miyake K, Shindo A, Kawanishi M, Kawai N, Tamiya T, Nagao S (2006) Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Investig 53(1–2):61–69

    Article  Google Scholar 

  • Wang Y, Tian Q, Liu EJ, Zhao L, Song J, Liu XA, Ren QG, Jiang X, Zeng J, Yang YT et al (2017) Activation of GSK-3 disrupts cholinergic homoeostasis in nucleus basalis of Meynert and frontal cortex of rats. J Cell Mol Med 21:3515–3528

    Article  CAS  Google Scholar 

  • Wessel Schmidt RL (2007) Generation of human embryonic stem cell-derived teratomas. In: Loring J (ed) Human stem cell manual. A laboratory guide, pp 162–170

    Chapter  Google Scholar 

  • Won J, Silva AJ (2008) Molecular and cellular mechanisms of memory allocation in neuronetworks. Neurobiol Learn Mem 89(3):285–292

    Article  CAS  Google Scholar 

  • **ong L, Duan L, Xu W, Wang Z (2019) Nerve growth factor metabolic dysfunction contributes to sevoflurane-induced cholinergic degeneration and cognitive impairments. Brain Res 1707:107–116

    Article  CAS  Google Scholar 

  • Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, AntosiewiczBourget J, Tian S, Stewart R, Thomson JA (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3(2):196–206

    Article  CAS  Google Scholar 

  • Xue W, Wang W, Gong T, Zhang H, Tao W, Xue L et al (2016) PKACREB-BDNF signaling regulated long lasting antidepressant activities of Yueju but not ketamine. Sci Rep 6:26331

    Article  CAS  Google Scholar 

  • Yan Y, Ma T, Gong K, Ao Q, Zhang X, Gong Y (2014) Adipose derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer ‘s disease mice. Neural Regen Res 9:798–805

    Article  CAS  Google Scholar 

  • Yang H, **e Z, Wei L, Yang H, Yang S, Zhu Z, Wang P, Zhao C, Bi J (2013) Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AbPP/PS1 transgenic mouse model. Stem Cell Res Ther 4:76

    Article  CAS  Google Scholar 

  • Yoo JM, Lee BD, Sok DE, Ma JY, Kim MR (2017) Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells. Redox Biol 11:592–599

    Article  CAS  Google Scholar 

  • Yue C, **g N (2015) The promise of stem cells in the therapy of Alzheimer’s disease. Transl Neurodegener 4:8

    Article  Google Scholar 

  • Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R et al (2005) A dual kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873–877

    Article  CAS  Google Scholar 

  • Zeng Q, Long Z, Feng M, Zhao Y, Luo S, Wang K et al (2019) Valproic acid stimulates hippocampal neurogenesis via activating the Wnt/beta-catenin signaling pathway in the APP/PS1/Nestin-GFP triple transgenic mouse model of Alzheimer’s disease. Front Aging Neurosci 11:62

    Article  CAS  Google Scholar 

  • Zetterberg H, Bendlin BB (2021) Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies. Mol Psychiatry 26:296–308

    Article  Google Scholar 

  • Zhang F, Jiang L (2015) Neuroinflammation in Alzheimer’s disease. Neuropsyc Dis Treat 11:243–256

    Article  Google Scholar 

  • Zhang W, Gu G, Shen X, Zhang Q, Wang G, Wang P (2015) Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiology of Aging xxx:1–11

    Google Scholar 

  • Zhang M, Wang L, An K, Cai J, Li G, Yang C, Liu H, Du F, Han X, Zhang Z (2018) Lower genomic stability of induced pluripotent stem cells reflects increased non-homologous end joining. Cancer Commun (Lond) 38:49

    Article  Google Scholar 

  • Zhao L, Chu CB, Li JF, Yang YT, Niu SQ, Qin W, Hao YG, Dong Q, Guan R, Hu WL et al (2013) Glycogen synthase kinase-3 reduces acetylcholine level in striatum via disturbing cellular distribution of choline acetyltransferase in cholinergic interneurons in rats. Neuroscience 255:203–211

    Article  CAS  Google Scholar 

  • Zhu Z, Huangfu D (2013) Human pluripotent stem cells: an emerging model in developmental biology. Development 140(4):705–717

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Adeniyi Adefegha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adefegha, S.A. (2023). Human Embryonic Stem Cells as a Therapy for Alzheimer’s Disease. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-3824-5_40

Download citation

Publish with us

Policies and ethics

Navigation