Abstract

Cumin (Cuminum cyminum L.), according to some survey is the most popularly used spice in the world. A member of the family Apiaceae, it is a small herb with chromosome number of 2n = 2x = 14, and it is economically very important and its cultivation is a means of livelihood of millions in Gujarat and Rajasthan. Cumin is mainly cultivated in India, Iran, Syria, Pakistan, and Turkey. India is the largest producer and exporter. It is widely used in foods, beverages, liquors, medicines, toiletries, and perfume industries. The mature dried fruit contains 2–5% essential oil. Though it is an important plant among seed spices, it suffers from various inherent problems. Low germination rate and poor seedling establishment are one of the major problems in cumin. Similarly, being a monotypic species, phenotypic and genetic variability in cumin is also low, because of which there is no source of resistance available against biotic (Alternaria blight and Fusarium wilt) and abiotic (frost and salinity) stresses. The flowers being small and slender restricts possibilities of artificial pollination, which hinders recombination breeding for genetic improvement. Consequently, most of the varieties available today are developed through selective breeding. Large number of efforts have been made in identification of bioactive constituents and verification of their pharmacological effects in animal systems. Cumin is one of the most widely used raw drug in the Indian system of medicine (Ayurveda). But as compared to cumin’s classical breeding including mutagenesis, very less efforts have been made on molecular breeding. Therefore, practically no molecular tools are available and no genomics-based breeding programs for improvement of cumin have been initiated yet. In this chapter, we underline the research attempts made in cumin on various aspects including genetic resources collection, conservation, and utilization, like genotype (G) and environment (E) effects on the seed biochemical constituents, mutation breeding, variability studies, tissue culture and genetic transformation, molecular markers studies, and some future directions of research are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acquadro, A., F. Magurno, E. Portis, et al. 2006. dbEST-derived microsatellite markers in celery (Apium graveolens L. var. dulce). Molecular Ecology Notes 6: 1080–1082.

    Article  CAS  Google Scholar 

  • Agarwal, S. 1996. Volatile oil constituents and wilt resistance in cumin (Cuminum cyminum L.). Current Science 7: 1177–1178.

    Google Scholar 

  • Ahmadian, A., A. Tavassoli, and E. Amiri. 2011. The interaction effect of water stress and manure on yield components, essential oil and chemical compositions of cumin (Cuminum cyminum). African Journal of Agricultural Research 6 (10): 2309–2315.

    Google Scholar 

  • Ahmed, Z.K., K.A.A. Mohamed, K.A. Shadia, et al. 2011. Establishment of embryogenic cell suspension culture and plant regeneration of Egyptian cumin (Cuminum cyminum L.). Functional Plant Science and Biotechnology 5 (2): 83–90.

    Google Scholar 

  • Alinian, S., and J. Razmjoo. 2014. Phenological, yield, essential oil yield and oil content of cumin accessions as affected by irrigation regimes. Industrial Crops and Products 54: 167–174.

    Article  CAS  Google Scholar 

  • Allard, R.W. 1999. Principles of plant breeding. New York: Wiley.

    Google Scholar 

  • Al-Snafi, A.E. 2016. The pharmacological activities of Cuminum cyminum. IOSR Journal of Pharmacy 2: 46–65.

    Google Scholar 

  • Amin, G.H. 2000. Cumin. In Handbook of herbs and spices, ed. K.V. Peter, 164–167. Cambridge, UK: Woodhead Publishing.

    Google Scholar 

  • Amin, G. 2012. Cumin. In Handbook of herbs and spices, vol. 1, 2nd ed., 250–259.

    Chapter  Google Scholar 

  • Anon. 2010. The plant list, version 1. Published on the Internet. http://www.theplantlist.org/. Accessed 1 Jan.

  • Ashraf, M., Q. Ali, and Z. Iqbal. 2006. Effect of nitrogen application rate on the content and composition of oil, essential oil and minerals in black cumin (Nigella sativa L.) seeds. The Journal of the Science of Food and Agriculture 86: 871–876.

    Article  CAS  Google Scholar 

  • Avatar, R., S.L. Dashora, R.K. Sharma, et al. 1991. Analysis of genetic divergence in cumin (Cumin cyminum L.). Indian Journal Of Genetics And Plant Breeding 51: 289–291.

    Google Scholar 

  • Azeez, S. 2008. Cumin. In Chemistry of spices, ed. V.A. Parthasarathy, B. Chempakam, and T.J. Zachariah, 211–226. Oxfordshire: CAB International.

    Chapter  Google Scholar 

  • Azizi, K., and D. Kahrizi. 2008. Effect of nitrogen levels, plant density and climate on yield quantity and quality in cumin (Cuminum cyminum L.) under the conditions of Iran. Asian Journal of Plant Sciences 7 (8): 710–716.

    Article  CAS  Google Scholar 

  • Azza, T.A. 1998. Plant regeneration in callus culture of cumin (Cuminum cyminum L.). Acta Horticulturae 457: 389–393.

    Google Scholar 

  • Azza, A.T., and G. Noga. 2001. Adventitious shoot proliferation from hypocotyl and internodal stem explants of cumin. Plant Cell, Tissue and Organ Culture 66 (2): 141–147.

    Article  Google Scholar 

  • ———. 2002. Cumin regeneration from seedling derived embryogenic callus in response to amended kinetin. Plant Cell, Tissue and Organ Culture 69 (1): 35–40.

    Article  Google Scholar 

  • Badr, F.H., and E.V. Georgiev. 1990. Amino acid composition of cumin seeds. Food Chemistry 38: 273–278.

    Article  CAS  Google Scholar 

  • Baghizadeh, A., M.S. Karimi, and S. Pourseyedi. 2013. Genetic diversity assessment of Iranian green cumin genotypes by RAPD molecular markers. International Journal of Agronomy and Plant Production 4 (3): 472–479.

    Google Scholar 

  • Bahmankar, M., S. Mohammad, M. Mortazavian, et al. 2019. Chemotypes and morpho-physiological characters affecting essential oil yield in Iranian cumin land races. Industrial Crops and Products 128: 256–269.

    Article  CAS  Google Scholar 

  • Bahraminejad, A., and G. Mohammadinejad. 2013. Use of microsatellite markers for molecular characterization of cumin (Cuminum cyminum L.) ecotypes. Iranian Journal of Genetics and Plant Breeding 2 (1): 35–41.

    Google Scholar 

  • Bahraminejad, A., G.M. Nejad, and A.M. Khadir. 2011. Genetic diversity evaluation of cumin based on phenotypic characteristics. Australian Journal of Crop Science 5 (3): 301–307.

    Google Scholar 

  • Bahraminejad, A., G. Mohammadi-Nejad, M.A. Kadir, et al. 2012. Molecular diversity of Cumin (Cuminum cyminum L.) using RAPD markers. Australian Journal of Crop Science 6 (2): 194–199.

    CAS  Google Scholar 

  • Bahraminejad, A., G. Mohammadinejad, and A.M. Kadir. 2014. Molecular diversity assessment of cumin ecotypes using AFLP markers. Acta Horticulturae (ISHS) 1023: 263–270.

    Article  Google Scholar 

  • Baijal, S.K., and B.K. Kaul. 1973. Karyomorphological studies in Coriandrum sativum and Cuminum. Cytologia 38: 211–217.

    Article  Google Scholar 

  • Bairwa, R.K., R.K. Solanki, Y.K. Sharma, et al. 2015. Phenotypic variability in cumin (Cuminum cyminum L.) for important agro-morphological traits. International Journal of Seed Spices 5 (1): 68–70.

    Google Scholar 

  • Baser, K.H.C., M. Kürkçüoglu, and T. Ozek. 1992. Composition of the Turkish cumin seed oil. Journal of Essential Oil Research 4: 133–138.

    Article  CAS  Google Scholar 

  • Baswana, K.S., M.L. Pandita, and Y.S. Malik. 1983. Genetic variability studies in cumin (Cuminum cyminum L.). Haryana Agricultural University Journal of Research 13: 596–598.

    Google Scholar 

  • Bettaieb, I., S. Bourgou, J. Sriti, K. Msaada, et al. 2011. Essential oils and fatty acids composition of Tunisian and Indian Cumin (Cuminum cyminum L.) seeds: A comparative study. Journal of Science and Food Agriculture 91 (11): 2100–2107.

    Article  CAS  Google Scholar 

  • Bettaleb, I., S. Bourgou, W.A. Wannes, et al. 2010. Essential oils, phenolics and antioxidant activities of different parts of cumin (Cuminum cyminum L.). Journal of Agricultural and Food Chemistry 58: 10410–10418.

    Article  Google Scholar 

  • Bhatt, J., S. Kumar, S. Patel, et al. 2017. Sequence-related amplified polymorphism (SRAP) markers based genetic diversity analysis of cumin genotypes. Annals of Agrarian Science 15 (4): 434–438.

    Article  Google Scholar 

  • Bhosale, J. 2022. https://economictimes.indiatimes.com/news/economy/agriculture/cumin-prices-set-to-shoot-up-30-35-as-indias-production-expected-to-fall-by-35-says-…medium=text&utm_campaign=cppst

  • Borges, P., and J. Pino. 1993. The isolation of volatile oil from cumin seeds by steam distillation. Die Nahrung 37 (2): 123–126.

    Article  CAS  Google Scholar 

  • Boriss, L. 2012. ApiacEae family. Vol. 1, 429. Create Space Independent Publishing Platform.

    Google Scholar 

  • Cavagnaro, P.F., S.-M. Chung, S. Manin, et al. 2011. Microsatellite isolation and marker development in carrot – Genomic distribution, linkage map**, genetic diversity analysis and marker transferability across Apiaceae. BMC Genomics 12: 386. https://doi.org/10.1186/1471-2164-12-386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceska, O., S.K. Chaudhary, P.J. Warrington, et al. 1986. Photoactive furocoumarins in fruits of some umbellifers. Phytochemistry 26: 165–169.

    Article  CAS  Google Scholar 

  • Champawat, R.S., and V.N. Pathak. 1990. Field screening of cumin germplasm against Fusarium oxysporum f.sp. cumini. Indian Cocoa, Arecanut and Spices Journal 13: 142.

    Google Scholar 

  • Charles, D.J. 2013. Cumin. In Antioxidant properties of spices, herbs and other sources, 265–271. Springer.

    Chapter  Google Scholar 

  • Chattopadhyay, D., and A. Sharma. 1990. Chromosome studies and estimation of nuclear DNA in different varieties of Cuminum cyminum L. and Carum copticum Benth. and Hook. Cytologia 55 (4): 631–637. https://doi.org/10.1508/cytologia.55.631.

    Article  Google Scholar 

  • Chaudhary, N., S.S. Husain, and M. Ali. 2014. Chemical composition and antimicrobial activity of cumin oil (Cuminum cyminum, Apiaceae). Journal of Pharmacy and Pharmaceutical Sciences 3: 1428–1441.

    CAS  Google Scholar 

  • Collard, B.C.Y., A. Das, P.S. Virk, et al. 2009. Evaluation of ‘quick and dirty’ DNA extraction methods for marker-assisted selection in rice (Oryza sativa L.). Plant Molecular Biology Reporter 27: 86–93.

    Article  CAS  Google Scholar 

  • Da Mata, T.L., M. Segeren, A.S. Fonseca, and C.A. Colombo. 2009. Genetic divergence among gerbera accessions evaluated by RAPD. Scientia Horticulturae 121: 92–96.

    Article  Google Scholar 

  • Daniel, B., B. Simpson, B. Lawrence, et al. 1997. Rapid in vitro multiplication of Eryngium foetidum L., an aromatic spice, through shoot multiplication and organogenesis. In Proceedings of the National Seminar on Biotechnology of Spices and Aromatic Plants, Calicut, India, 51–55.

    Google Scholar 

  • Dave, A., and A. Batra. 1995. Role of protein metabolism constituents in somatic embryo formation in cumin. Indian Journal of Plant Physiology 38 (1): 25–27.

    CAS  Google Scholar 

  • Deepak. 2013. Importance of Cuminum cyminum L. and Carum carvi L. in traditional medicaments-a review. Indian Journal of Traditional Knowledge 12 (2): 300–307.

    Google Scholar 

  • Dhayal, L.S., S.C. Bhargava, and S.C. Mahala. 1999. Studies on variability in cumin (Cuminum cyminum L.) on normal and saline soil. Journal of Spices and Aromatic Crops 8 (2): 197–199.

    Google Scholar 

  • Dubey, P.N., N. Saxena, B. Mishra, et al. 2017. Preponderance of cumin (Cuminum cyminum L.) essential oil constituents across cumin growing Agro-Ecological Sub Regions, India. Industrial Crops and Products 95: 50–59.

    Article  CAS  Google Scholar 

  • Ebrahimie, E., A.A. Habashi, B. Ghareyazie, et al. 2003. A rapid and efficient method for regeneration of plantlets from embryo explants of cumin (Cuminum cyminum). Plant Cell, Tissue and Organ Culture 75: 19–25.

    Article  CAS  Google Scholar 

  • Ebrahimie, E., A.A. Habashi, M. Mohammadie-Dehcheshmeh, et al. 2006. Direct shoot regeneration from mature embryo as a rapid and genotype independent pathway in tissue culture of heterogenous diverse sets of cumin (Cuminum cyminum L.) genotypes. In Vitro Cellular & Developmental Biology. Plant 42: 455–460. https://doi.org/10.1079/IVP2006789.

    Article  CAS  Google Scholar 

  • Ebrahimie, E., A. Hosseinzadeh, M.R. Nagavi, et al. 2007. Combined direct regeneration protocols in tissue culture of different cumin genotypes based on pre-existing meristems. Pakistan Journal of Biological Sciences 10 (9): 1360–1370.

    Article  CAS  PubMed  Google Scholar 

  • Ehteramyan, K., M. Bohrani, and P. Moghaddam. 2007. Evaluation of different nitrogen levels and sowing dates on cumin (Cuminum cyminum L.) production. Iranian Field Crops Research 5 (1): 1–8.

    Google Scholar 

  • El-Sawi, S.A., and M.A. Mohamed. 2002. Cumin herb as a new source of essential oils and its response to foliar spray with some micro-elements. Food Chemistry 77 (1): 75–80.

    Article  CAS  Google Scholar 

  • Erden, K., A. Ozel, U. Demirel, et al. 2013. Changes in yield, yield components and essential oil composition of cumin (Cuminum cyminum l.) under different seed amount and inter row spacing. Bulgarian Journal of Agricultural Science 19: 194–201.

    Google Scholar 

  • Farag, S.E.A., and M. Abozeid. 1997. Degradation of the natural mutagenic compound safrole in spices by cooking and irradiation. Food/Nahrung 41: 359–361.

    Article  CAS  PubMed  Google Scholar 

  • Felabi, A. 1992. Effects of sowing dates and row distances on yield of cumin (Cuminum cyminum L.) in irrigated and rainfed agriculture, 30. Iran Sci Technol Pub.

    Google Scholar 

  • Gaudeul, M., Y. Naciri-Graven, P. Gauthier, et al. 2002. Isolation and characterization of microsatellites in a perennial Apiaceae, Eryngium alpinum L. Molecular Ecology Notes 2: 107–109.

    Article  CAS  Google Scholar 

  • Gohari, A.R., and S. Soodabeh. 2011. A review on Phytochemistry of Cuminum cyminum seeds and its standards from Field to Market. The Pharmacogenomics Journal 3 (25): 1–5.

    Article  Google Scholar 

  • Gupta, D., and S. Bhargava. 2001. Thidiazuron induced regeneration in Cuminum cyminum L. Journal of Plant Biochemistry and Biotechnology 10 (1): 61–62.

    Article  CAS  Google Scholar 

  • Hajlaoui, H., H. Mighri, E. Noumi, et al. 2010. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: A high effectiveness against Vibrio spp. strains. Food and Chemical Toxicology 48: 2186–2192.

    Article  CAS  PubMed  Google Scholar 

  • Hashemi, P., A. Yarahmadi, K.H. Azizi, et al. 2007. Study of the effects of N fertilization and plant density on the essential oil composition and yield of Cuminum cyminum L. seeds by HS–SME. Chromatographia 67 (3): 253–257.

    Google Scholar 

  • Hashemian, N., A.G. Pirbalouti, M. Hashemi, et al. 2013. Diversity in chemical composition and antibacterial activity of essential oils of cumin (Cuminum cyminum L.) diverse from northeast of Iran. Australian Journal of Crop Science 7 (11): 1752–1760.

    Google Scholar 

  • Hemavathy, J., and J.V. Prabhaker. 1988. Lipid composition of cumin (Cuminum cyminum L.) seeds. Journal of Food Science 53: 1578–1579.

    Article  CAS  Google Scholar 

  • Hirasa, K., and M. Takemasa. 1998. Cooking with spices. In Spice science and technology, 70. New York: Marcel Dekker.

    Chapter  Google Scholar 

  • Hossein, R.A., C.A. Kianoosh, K. Danial, et al. 2013. Comparison of morpho-agronomic traits versus RAPD and ISSR markers in order to evaluate genetic diversity among Cuminum cyminum L. accessions. Australian Journal of Crop Science 7 (3): 361–367.

    Google Scholar 

  • Hunault, G. 1981. La culture in vitro des tissus de Fenouil (Foeniculum vulgare Miller). Premières observations sur le comportement des explantatsprimitifs et des cals. Comptes Rendus de l’Académie des Sciences 293: 553–558.

    Google Scholar 

  • Hussein, M.A., and R. Batra. 1998. In vitro embryogenesis of cumin hypocotyls segments. Advances in Plant Sciences 11: 125–127.

    Google Scholar 

  • Jakhar, M.L., G. Ram, and B. Lal. 2013. In vitro regeneration and characterization of in vitro mutants in cumin. Journal of Plant Science and Research 29 (2): 255–263.

    Google Scholar 

  • Jalali-Heravi, M., B. Zekavat, and H. Sereshti. 2007. Use of gas chromatography–mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway. Journal of Chromatography A 1143: 215–226.

    Article  CAS  PubMed  Google Scholar 

  • Jangir, R.P., and R. Singh. 1996. Effect of irrigation and nitrogen on seed yield of cumin (Cuminum cyminum). Indian Journal of Agronomy 41 (1): 140–143.

    Google Scholar 

  • Jha, T.B., and S.G. Roy. 1983. Morphogenesis and chromosomal analysis in Cuminum cyminum L. Journal of the Indian Botanical Society 62: 181–184.

    Google Scholar 

  • Kafi, M. 2002. Cumin (Cuminum cyminum) production and processing. Boca Raton: CRC Press. https://doi.org/10.1201/9781482280531.

    Book  Google Scholar 

  • Kalia, R.K., R. Singh, M.K. Rai, et al. 2011. Biotechnological interventions in sea buckthorn (Hippophae L.): Current status and future prospects. Trees-Structure and Function 25: 559–579.

    Article  Google Scholar 

  • Kamada, H., and H. Harada. 1979. Studies on organogenesis in carrot tissue culture II: Effects of amino acids and inorganic nitrogenous compounds on somatic embryogenesis. Zeits Pflanzen 91: 453–463.

    Article  CAS  Google Scholar 

  • Kan, Y., M. Kartal, T. Zzek, et al. 2007. Composition of essential oil of Cuminum cyminum L. according to harvesting times. Turkish Journal of Pharmaceutical Sciences 1: 25–29.

    Google Scholar 

  • Kanani, P., Y.M. Shukla, A.R. Modi, et al. 2019. Standardization of an efficient protocol for isolation of RNA from Cuminum cyminum. Journal of King Saud University, Science 31 (4): 1202–1207.

    Article  Google Scholar 

  • Kapoor, L.D., and B.K. Kaul. 1966. Studies on the vittae (oil canals) of some important medicinal umbelliferous fruits (Part I). Proceedings of National Institute of Science India 33: 1–2.

    Google Scholar 

  • Kaur, D., and R. Sharma. 2012. An update on pharmacological properties of cumin. International Journal of Research in Pharmacy and Science 2 (4): 14–27.

    CAS  Google Scholar 

  • Kermani, M., H. Marashi, M.R. Nasiri, et al. 2006. Study of genetic variation of Iranian cumin lines (Cuminum cyminum) using AFLP markers. Agricultural Science and Technology 3: 305–312.

    Google Scholar 

  • Kermani, M., H. Marashi, and A. Safarnejad. 2009. Investigation of genetic variation within and among two species of Cuminum spp. using AFLP markers. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research 2: 198–206.

    Google Scholar 

  • Kumar, G., and M. Bhardwaj. 2022. Gamma rays induced cytomictic variations in pollen mother cells of cumin (Cuminum cyminum). Cytology and Genetics 56: 277–284.

    Article  Google Scholar 

  • Kumar, S., H.A. Mahendi, R.S. Fougat, et al. 2014. Transferability of carrot (Daucus carota) microsatellite markers to cumin (Cuminum cyminum). International Journal of Seed Spices 4 (1): 88–90.

    Google Scholar 

  • Kumhar, S.R., B.R. Choudhary, R. Ramesh, et al. 2020. Genetic diversity studies of cumin (Cuminum cyminum L.) genotypes in western plains of Rajasthan. Journal of Spices and Aromatic Crops 29 (1): 67–71.

    Article  Google Scholar 

  • Laribi, B., I. Bettaieb, K. Kouki, et al. 2009. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Industrial Crops and Products 31: 34–42.

    Google Scholar 

  • Lestari, E.G. 2006. In vitro selection and soma-clonal variation for biotic and abiotic stress tolerance. Biodiversitas 7: 297–301.

    Article  Google Scholar 

  • Li, R., and Z.-T. Jiang. 2004. Chemical composition of the essential oil of Cuminum cyminum L. from China Fla. Fragrance Journal 19: 311–313.

    Article  Google Scholar 

  • Ma, Y.M., L.Y. Zhi, W. Hao, et al. 2008. Analysis on ISSR markers of germplasm for Cuminum cyminum L in **njiang. **njiang Agricultural Sciences 1: 70–74.

    Google Scholar 

  • Manif, S., and S. Aifa. 2015. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chemistry & Biodiversity 12 (5): 733–742. https://doi.org/10.1002/cbdv.201400305.

    Article  CAS  Google Scholar 

  • Mann, R., K. Agarwal, C. Singh, et al. 2008. Adventitious shoot proliferation from aseptically germinated seedlings of Cuminum cyminum. Pharmacognosy Magazine 4 (14): 132–137.

    CAS  Google Scholar 

  • Martos, M.V., Y.R. Navajas, J.F. López, et al. 2007. Chemical composition of the essential oils obtained from some spices widely used in Mediterranean Region. Acta Chimica Slovenica 54 (4): 921–926.

    Google Scholar 

  • Maskevich, A. 2015. Cumin. The ancient spice that’s travelled the globe. KPBS, BBC Word Service. https://www.kpbs.org/news/2015/03/11/cumin-the-ancient-spice-thats-traveled-the-globe. Accessed 9 Oct 2022.

  • Mathur, S.C., M. Anwar, and P.D. Bhargava. 1971. Studies on splitting of phenotypic and genotypic complexes and their correlation in coriander (Coriandrum sativum L.). Rajasthan Journal of Agricultural Science 2: 63–71.

    Google Scholar 

  • Mazaheri, M., B. Fakheri, I. Piri, et al. 2013. The effect of drought stress and micronutrient of Zn and Mn on yield and essential oil of (Cuminum cyminum). Journal of Novel and Applied Science 2 (9): 350–356.

    Google Scholar 

  • Meena, R.D., V.K. Baranwal, G. Lal, et al. 2022. First report of Vanilla distortion mosaic virus on cumin (Cuminum cyminum L.) in India. Journal of Plant Pathology 104 (877). https://doi.org/10.1007/s42161-022-01077-3.

  • Mershekari, B. 2004. Effects of planting time and planting density on yield and essential oil of cumin (Cuminum cyminum L.) in Tabriz conditions. Agricultural Sciences 10 (2): 145–152.

    Google Scholar 

  • Motamedi-Mirhosseini, L., G.M. Nejad, A. Bahraminejad, et al. 2011. Evaluation of cumin (Cuminum cyminum L.) landraces under drought stress based on some agronomic traits. African Journal of Plant Science 5 (12): 749–752.

    Google Scholar 

  • Nadeem, M., and A. Riaz. 2012. Cumin (Cuminum cyminum) as a potential source of antioxidants. Pakistan Journal of Food Sciences 22 (2): 101–107.

    Google Scholar 

  • Nejad, A.R. 2011. Productivity of Cumin (Cuminum cyminum L.) as affected by irrigation levels and row spacing. Australian Journal of Basic and Applied Sciences 5 (3): 151–157.

    Google Scholar 

  • Nezami, A., E.R. Ehsan, Z. Khorasani, et al. 2011. Evaluation of the impacts of fall sowing dates on different ecotypes of cumin (Cuminum cyminum, Apiaceae L.) productivity in Northeast of Iran. Notulae Scientia Biologicae 3 (4): 123–128.

    Article  Google Scholar 

  • Niemann, M., L. Westphal, and G. Wricke. 1997. Analysis of microsatellite markers in carrot (Daucus carota L. sativus). Journal of Applied Genetics 38: 20–27.

    Google Scholar 

  • Pandey, S., A. Mishra, M.K. Patel, et al. 2013. An efficient method for agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.). Applied Biochemistry and Biotechnology 171 (1): 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Parashar, M., and C.P. Malik. 2014. Appraisal of genetic diversity in Cuminum cyminum L. using molecular markers. LS-An International Journal of Life Sciences 3 (3): 143–156.

    Article  Google Scholar 

  • Parashar, M., M.L. Jakhar, and C.P. Malik. 2014. A review on biotechnology, genetic diversity in Cumin (Cuminum cyminum). International Journal of Life Science and Pharma Research 4 (4): 17–34.

    Google Scholar 

  • Patel, N.R., A.M. Amin, and A.U. Amin. 2017. Chemical management of cumin blight. International Journal of Seed Spices 7 (2): 82–86.

    Google Scholar 

  • Peter, K.V. 2001. Handbook of herbs and spices. Vol. 1. Woodhead.

    Book  Google Scholar 

  • Rahimian, M.H. 1991. Effect of cultivation and irrigation date on cumin growth and yield. Indus Sci Studies Org Iran, Khorasan Research Center.

    Google Scholar 

  • Rai, N., S. Yadav, A.K. Verma, et al. 2012. A monographic profile on quality specifications for a herbal drug and spice of commerce- Cuminum cyminum L. International Journal of Advance Herbal Science and Technology 1 (1): 1–12.

    Google Scholar 

  • Ramkrishna, K. 2008. Mutation breeding in seed spices. In International Symposium on Induced Mutations in Plants (ISIM), vol. 40(3), 167.

    Google Scholar 

  • Randhawa, G.S., A. Singh, and R.K. Mahey. 1987. Optimising agronomic requirements for seed yield and quality of dill (Anethum graveolens L) oil. Acta Horticulturae 208: 61–68.

    Article  Google Scholar 

  • Ravindran, P.N. 2017. Cumin. In The encyclopaedia of herbs & spices, vol. 1, 319–324. UK: CABI.

    Chapter  Google Scholar 

  • Rebey, I.B., J.K. Iness, H.S. Ibtissem, et al. 2012. Effect of drought on the biochemical composition and antioxidant activities of Cumin (Cuminum cyminum L.) seeds. Industrial Crops and Products 36: 238–245.

    Article  Google Scholar 

  • Sadeghi, B., and M.H.R. Mohasel. 1991. Effect of N and irrigation on producing cumin. Industrial and Scientific Studies Organization of Iran, Khorasan Research Institute.

    Google Scholar 

  • Sastry, E.V.D., and M. Anandaraj. 2013. Cumin, fennel and fenugreek. Soils, plant growth and crop production. In Encyclopedia of life support systems (EOLSS). https://www.eolss.net/sample-chapters/c10/E1-05A-50-00.pdf

  • Sastry, E.V.D., and M.M. Sharma. 2008. Gamma ray induced variation in cumin (Cuminum cyminum L.). In International Symposium on Induced Mutations in Plants (ISIM), vol. 40(3), 162.

    Google Scholar 

  • Saxena, S.N., R.K. Kakani, L.K. Sharma, et al. 2015. Usefulness of hydro-matrix seed priming in Cumin (Cuminum cyminum L.) for hastening germination. International Journal of Seed Spices 5 (1): 24–28.

    Google Scholar 

  • Sehgal, C.B. 1965. The embryology of Cuminum cyminum L. and Trachyspernumammi (L.) Sprague (Carum copticum Clarke). Proceedings of the National Institute of Sciences of India B31: 175–201.

    Google Scholar 

  • Shahnaz, H., A. Hifza, K. Bushra, et al. 2004. Lipid studies of Cuminum cyminum fixed oil. Pakistan Journal of Botany 36 (2): 395–401.

    Google Scholar 

  • Sharma, R.K. 1994. Genetic resources of seed spices. In Advances in horticulture, ed. K.L. Chaddha and P. Rethinam, vol. I, 191–207. New Delhi: Malhotra Publishing House.

    Google Scholar 

  • Sharma, L.K., D. Agarwal, Y. Sharma, et al. 2014. Cryogenic grinding technology enhances volatile oil, oleoresin and antioxidant activity of Cumin (Cuminum cyminum L.). International Journal of Seed Spices 4 (2): 68–72.

    Google Scholar 

  • Singh, B.S., and G.C. Jadeja. 2006. Genetic variability studies in cumin Cuminum cyminum L. Crop Research-Hisar 32 (3): 560–562.

    Google Scholar 

  • Singh, M., S.C. Bhargava, and V. Prakash. 2001. Genetic variability in cumin (Cuminum cyminum L.) under salinity. Agricultural Science Digest 21 (1): 57–58.

    Google Scholar 

  • Singh, G., P. Marimuthu, M.P. Lampasona, et al. 2006. Cuminum cyminum L. Chemical constituents, antioxidant and antifungal studies on its volatile oil and acetone extract. Indian Perfumer 50 (3): 31–39.

    CAS  Google Scholar 

  • Singh, N., A. Mishra, M. Joshi, et al. 2010. Microprojectile bombardment mediated genetic transformation of embryo axes and plant regeneration in cumin (Cuminum cyminum L.). Plant Cell, Tissue and Organ Culture (PCTOC) 103 (1): 1–6.

    Article  Google Scholar 

  • Singh, A., E.E. Ebenso, and M.A. Quraishi. 2012. Theoretical and electrochemical studies of Cuminum cyminum (Jeera) extract as green corrosion inhibitor for mild steel in hydrochloric acid solution. International Journal of Electrochemical Science 7: 8543–8559.

    Article  CAS  Google Scholar 

  • Singh, R., G. Lal, S.P. Maheria, et al. 2015. Effect of irrigation techniques and planting methods on yield and water productivity of cumin (Cuminum cyminum L.). International Journal of Seed Spices 5 (1): 92–94.

    Google Scholar 

  • Solanki, Z.S., and P. Joshi. 1989. Genetic variability and heritability studies in cumin (Cuminum cyminum L.). In Proc First Nat Sem Seed Spices, Jaipur, Oct 24–25.

    Google Scholar 

  • Solanki, Z.S., B.R. Choudhary, and S.R. Kumhar. 2008. Induced mutations in cumin (Cuminium cyminum L.). In International Symposium on Induced Mutations in Plants (ISIM), vol. 40(3), 147.

    Google Scholar 

  • Sowbhagya, H.B. 2013. Chemistry, technology, and nutraceutical functions of cumin (Cuminum cyminum L.): An overview. Critical Reviews in Food Science and Nutrition 53 (1): 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Sowbhagya, H.B., P.F. Suma, S. Mahadevamma, et al. 2007. Spent residue from cumin – a potential source of dietary fiber. Food Chemistry 104: 1220–1225.

    Article  CAS  Google Scholar 

  • Takayanagi, T., T. Ishikawa, and J. Kitajima. 2003. Sesquiterpene lactone glucosides and alkyl glycosides from the fruit of cumin. Phytochemistry 63: 479–484.

    Article  CAS  PubMed  Google Scholar 

  • Toghrol, F., and H. Daneshpejouh. 1974. Estimation of free amino acids, protein and amino acid compositions of cumin seed (Cuminum cyminum) of Iran. The Journal of Tropical Pediatrics and Environmental Child Health 20: 109–111.

    CAS  PubMed  Google Scholar 

  • Yadav, S.K., and K.R. Krishna. 2013. Effectiveness and efficiency of physical and chemical mutagens on cumin (Cuminum cyminum L.). Vegetos 26 (1): 44–49.

    Article  Google Scholar 

  • Yava, R.S., and A.K. Dahama. 2003. Effect of planting date, irrigation and weed-control on yield and water use efficiency of cumin (Cuminum cyminum). Indian Journal of Agricultural Sciences 73 (9): 494–496.

    Google Scholar 

  • Zaman, U., and A. Abbasi. 2009. Isolation, purification and characterization of a nonspecific lipid transfer protein from Cuminum cyminum. Phytochemistry 70: 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Zandi, P., S.K. Basu, L.B. Khatibani, et al. 2015. Fenugreek (Trigonella foenum-graecum L.) seed: A review of physiological and biochemical properties and their genetic improvement. Acta Physiologiae Plantarum 37: 1714–1727.

    Article  Google Scholar 

  • Zolleh, H.H., S. Bahraminejad, G. Maleki, et al. 2009. Response of cumin (Cuminum cyminum L.) to sowing date and plant density. Research Journal of Agriculture and Biological Sciences 5 (4): 597–602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meena, R.S., Saxena, S.N., Kumar, S. (2024). Cumin. In: Ravindran, P.N., Sivaraman, K., Devasahayam, S., Babu, K.N. (eds) Handbook of Spices in India: 75 Years of Research and Development. Springer, Singapore. https://doi.org/10.1007/978-981-19-3728-6_30

Download citation

Publish with us

Policies and ethics

Navigation