Detection of Potential Vulnerable Patients Using Oximeter

  • Conference paper
  • First Online:
International Conference on Innovative Computing and Communications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 492))

  • 374 Accesses

Abstract

Agriculture, education and health systems have all progressed in the last decade. In times of pandemic crises like COVID-19, IoT and sensors play a critical role in the medical industry. Sensors and IoT-based health care gadgets have emerged as saviors for humanity in the face of resource shortage. Pulse oximeters are one such instrument that has been utilized widely during pandemics. Since a long time, pulse oximeters have been used to measure crucial body functions such as saturation of peripheral oxygen (SpO2) and pulse rate. They have been utilized to detect vital signs in patients in order to diagnose cardiac trouble early. However, oximeters have been widely utilized to detect SPO2 levels in persons during the current pandemic. People are being attacked by the COVID-19, which is silently destroying their lungs, causing pneumonia and lowering oxygen levels to dangerously low levels. We propose a strategy in this study for detecting possibly vulnerable individuals by classifying them using data obtained from pulse oximeters. We propose an approach by involving volunteers who will record their vitals and share it with administrators on a regular basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bilgin M (2020) Novel random models of entity mobility models and performance analysis of random entity mobility models. Turkish J Electr Eng Comput Sci 28:708–726. https://doi.org/10.3906/ELK-1904-102

    Article  Google Scholar 

  2. Capponi A (2018) User rewarding and distributed payment platforms for mobile crowdsensing systems

    Google Scholar 

  3. Chawla S, Mittal M, Chawla M, Goyal LM (2020) Corona virus—SARS-CoV-2: an insight to another way of natural disaster. EAI Endorsed Trans Pervasive Heal Technol 6:1–9. https://doi.org/10.4108/EAI.28-5-2020.164823

  4. Desai MR, Toravi S (2018) A smart sensor interface for smart homes and heart beat monitoring using WSN in IoT environment. In: International conference on current trends in computer, electrical, electronics and communication CTCEEC 2017, pp 74–77. https://doi.org/10.1109/CTCEEC.2017.8455124

  5. Ganti RK, Ye F, Lei H (2011) Mobile crowdsensing: current state and future challenges

    Google Scholar 

  6. Jaimes LG, Vergara-Laurens IJ, Raij A (2015) A survey of incentive techniques for mobile crowd sensing. IEEE Internet Things J 2:370–380. https://doi.org/10.1109/JIOT.2015.2409151

    Article  Google Scholar 

  7. Lane ND, Miluzzo E, Lu H et al (2010) Ad hoc and sensor networks a survey of mobile phone sensing

    Google Scholar 

  8. Luks AM, Swenson ER (2020) Pulse oximetry for monitoring patients with COVID-19 at home. Potential pitfalls and practical guidance. Ann Am Thorac Soc 17:1040–1046. https://doi.org/10.1513/ANNALSATS.202005-418FR

    Article  Google Scholar 

  9. Maisonneuve N, Stevens M, Niessen ME, Steels L (2009) NoiseTube: measuring and map** noise pollution with mobile phones. Environ Sci Eng, Subseries Environ Sci 215–228. https://doi.org/10.1007/978-3-540-88351-7_16

  10. Mei Q, Gül M, Shirzad-Ghaleroudkhani N (2020) Towards smart cities: crowdsensing-based monitoring of transportation infrastructure using in-traffic vehicles. J Civ Struct Heal Monit 104(10):653–665. https://doi.org/10.1007/S13349-020-00411-6

  11. Mohan P, Padmanabhan VN, Ramjee R, Padmanabhan V (2008) TrafficSense: rich monitoring of road and traffic conditions using mobile smartphones

    Google Scholar 

  12. Morishita S, Maenaka S, Nagata D et al (2015) SakuraSensor: quasi-realtime cherry-lined roads detection through participatory video sensing by cars. In: UbiComp 2015—proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing, pp 695–705. https://doi.org/10.1145/2750858.2804273

  13. Mukherjee R, Kundu A, Mukherjee I et al (2021) IoT-cloud based healthcare model for COVID-19 detection: an enhanced K-nearest neighbour classifier based approach. Computing 1–21. https://doi.org/10.1007/S00607-021-00951-9/FIGURES/8

  14. Nayyar A, Puri V, Nguyen NG (2019) BioSenHealth 1.0: a novel internet of medical things (IoMT)-based patient health monitoring system. Lecture Notes in Networks and Systems, vol 55, pp 155–164. https://doi.org/10.1007/978-981-13-2324-9_16

  15. Otoshi T, Nagano T, Izumi S et al (2021) A novel automatic cough frequency monitoring system combining a triaxial accelerometer and a stretchable strain sensor. https://doi.org/10.1038/s41598-021-89457-0

  16. Priyantha B, Lymberopoulos D, Liu J (2011) LittleRock: enabling energy-efficient continuous sensing on mobile phones. IEEE Pervasive Comput 10:12–15. https://doi.org/10.1109/MPRV.2011.28

    Article  Google Scholar 

  17. Rabbi M, Ali S, Choudhury T, Berke E (2011) Passive and in-situ assessment of mental and physical well-being using mobile sensors. Proc ACM Int Conf Ubiquitous Comput UbiComp 2011:385. https://doi.org/10.1145/2030112.2030164

  18. Somasekar J, Pavan Kumar P, Sharma A, Ramesh G (2020) Machine learning and image analysis applications in the fight against COVID-19 pandemic: datasets, research directions, challenges and opportunities. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2020.09.352

    Article  Google Scholar 

  19. Teo J (2020) Early detection of silent hypoxia in COVID-19 pneumonia using smartphone pulse oximetry. J Med Syst 44. https://doi.org/10.1007/S10916-020-01587-6

  20. Walonoski J, Kramer M, Nichols J et al (2018) Synthea: an approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record. J Am Med Inform Assoc 25:230–238. https://doi.org/10.1093/JAMIA/OCX079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navjyot Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, N., Kumar, R. (2023). Detection of Potential Vulnerable Patients Using Oximeter. In: Gupta, D., Khanna, A., Hassanien, A.E., Anand, S., Jaiswal, A. (eds) International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems, vol 492. Springer, Singapore. https://doi.org/10.1007/978-981-19-3679-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3679-1_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3678-4

  • Online ISBN: 978-981-19-3679-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation