Grapes: A Crop with High Nutraceuticals Genetic Diversity

  • Living reference work entry
  • First Online:
Compendium of Crop Genome Designing for Nutraceuticals

Abstract

Grapevine is considered the most important fruit crop cultivated in temperate regions and is acknowledged as a model species for non-climacteric fleshy fruits. From a nutritional perspective, grapes are fruits with a high content of carbohydrates, a good nutritional source of minerals and vitamins, and most importantly, they are one of the richest fruits in polyphenols and other compounds with antioxidant properties. In particular, this chapter focuses on nutraceutical compounds such as phenolic acids, stilbenes, flavonols, flavanols, tannins, anthocyanidins, monoterpenes, sesquiterpenes, carotenoids, C13-norisoprenoids, and some vitamins. Their chemical structures and biosynthetic pathways are revised, and the content and diversity of these secondary metabolites in genetic resources of the genus Vitis (including Muscadinia and Vitis species, focusing on V. vinifera cultivars) are shown. In addition, QTL and association studies exploring the genetic basis of the biosynthesis of different health-related compounds in V. vinifera grape berries were asserted. Finally, a survey on the peculiarities and limits of traditional breeding compared to the innovative plant breeding techniques (cisgenesis and genome editing) applied to grapevine is provided. We conclude with the potential role of grape miRNA on human health as likely candidates for dietary therapy approaches due to their cross-kingdom abilities and regulation activity of gene expression and cellular processes in humans through dietary intake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achkar NP, Cambiagno DA, Manavella PA (2016) miRNA biogenesis: a dynamic pathway. Trends Plant Sci 21(12):1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Alston JM, Sambucci O (2019) Grapes in the world economy. In: Cantu D, Walker MA (eds) The grape genome. Springer Nature, Cham

    Google Scholar 

  • Ammollo CT, Semeraro F, Milella RA, Antonacci D, Semeraro N et al (2017) Grape intake reduces thrombin generation and enhances plasma fibrinolysis. Potential role of circulating procoagulant microparticles. J Nutr Biochem 50:66–73

    Article  CAS  PubMed  Google Scholar 

  • Aradhya M, Wang Y, Walker MA, Prins BH, Koehmstedt AM et al (2013) Genetic diversity, structure, and patterns of differentiation in the genus Vitis. Plant Syst Evol 299:317–330

    Article  CAS  Google Scholar 

  • Arapitsas P, Oliveira J, Mattivi F (2015) Do white grapes really exist? Food Res Int 69:21–25

    Article  CAS  Google Scholar 

  • Aubert C, Chalot G (2018) Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chem 240:524–533

    Article  CAS  PubMed  Google Scholar 

  • Bacilieri R, Lacombe T, Le Cunff L, Di Vecchi-Staraz M, Laucou V et al (2013) Genetic structure in cultivated grapevine is linked to geography and human selection. BMC Plant Biol 13(25):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Banjanin T, Uslu N, Vasic ZR, Özcan MM (2020) Effect of grape varieties on bioactive properties, phenolic composition, and mineral contents of different grapevine leaves. J Food Process Preserv 45:s

    Google Scholar 

  • Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C et al (2009) The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 118(4):653–669

    Article  CAS  PubMed  Google Scholar 

  • Battilana J, Emanuelli F, Gambino G, Gribaudo I, Gasperi F et al (2011) Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. J Exp Bot 62:5497–5508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belli Kullan J, Pinto DLP, Bertolini E, Fasoli M, Zenoni S et al (2015) miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC genomics 16:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogs J, Jaffè FW, Takos AM, Walker AR, Robinson SD (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143(3):1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M et al (2014a) A UDP-glucose: monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiol 165:561–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M et al (2014b) Activity-based profiling of a physiologic aglycone library reveals sugar acceptor promiscuity of family 1 UDP-glucosyltransferases from grape. Plant Physiol 166:23–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Bontpart T, Marlin T, Vialet S, Guiraud J-L, Pinasseau L et al (2016) Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine. J Exp Bot 67:3537–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Budic-Leto I, Mucalo A, Ljubenkov I, Zdunic G (2018) Anthocyanin profile of wild grape Vitis vinifera in the eastern Adriatic region. Sci Hort 238:32–37

    Article  CAS  Google Scholar 

  • Bunea CI, Pop N, Babes AC, Matea C, Dulf FV et al (2012) Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem Cent J 6:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y et al (2021) Biosynthesis and cellular functions of tartaric acid in grapevines. Front Plant Sci 12:643024

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell J, Sarkhosh A, Habibi F, Gajjar P, Ismail A et al (2021) Evaluation of biochemical juice attributes and color-related traits in muscadine grape population. Foods 10:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos G, Chialva C, Miras S, Lijavetzky D (2021) New technologies and strategies for grapevine breeding through genetic transformation. Front Plant Sci 12:767522–767522

    Article  PubMed  PubMed Central  Google Scholar 

  • Caputi L, Carlin S, Ghiglieno I, Stefanini M, Valenti L et al (2011) Relationship of changes in rotundone content during grape ripening and winemaking to manipulation of the ‘peppery’ character of wine. J Agric Food Chem 59:5565–5571

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Bejerano P, Royo C, Mauri N, Ibanez J, Martinez-Zapater JM (2019) Somatic variation and cultivar innovation in grapevine. In: Morata A, Loira I (eds) Advances in grape and wine biotechnology. https://doi.org/10.5772/intechopen.86443

  • Cardoso S, Lau W, Eiras Dias J, Fevereiro P, Maniatis N (2012) A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L. PLoS One 7(9):e46021

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrier G, Huang YF, Le Cunff L, Fournier-Level A, Vialet S et al (2013) Selection of candidate genes for grape proanthocyanidin pathway by an integrative approach. Plant Physiol Biochem 72:87–95

    Article  CAS  PubMed  Google Scholar 

  • Catalgol B, Batirel S, Taga Y, Ozer NK (2012) Resveratrol: French paradox revisited. Front Pharmacol 3:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalieri D, Rizzetto L, Tocci N, Rivero D, Asquini E et al (2016) Plant microRNAs as novel immunomodulatory agents. Sci Rep 6:25761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin AR, Fong MY, Somlo G, Wu J, Swiderski P et al (2016) Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26(2):217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G et al (2018) miRVIT: a novel miRNA database and its application to uncover Vitis responses to Flavescence dorée infection. Front Plant Sci 9:1034

    Article  PubMed  PubMed Central  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN et al (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in develo** grape berries. Plant Physiol 151(3):1513–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalla Costa L, Piazza S, Campa M, Flachowsky H, Hanke M-V, Malnoy M (2016) Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tiss Org Cult (PCTOC) 124:471–481

    Article  CAS  Google Scholar 

  • Dalla Costa L, Malnoy M, Lecourieux D, Deluc L, Ouaked-Lecourieux F et al (2019) The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS). Oeno One 53:189–212

    Article  Google Scholar 

  • Dalla Costa L, Piazza S, Pompili V, Salvagnin U, Cestaro A et al (2020) Strategies to produce T-DNA free CRISPRed fruit trees via agrobacterium tumefaciens stable gene transfer. Sci Rep 10:1–14

    Article  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A et al (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in develo** grape berries. Plant Physiol 147:2041–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doligez A, Audiot E, Baumes R, This P (2006) QTLs for Muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18(2):109–125

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  • Drew DP, Andersen TB, Sweetman C, Møller BL, Ford C, Simonsen HT (2015) Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene. J Exp bot 67:erv491

    Google Scholar 

  • Duan L, Ouyang K, Xu X, Xu L, Wen C et al (2021) Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front Genet 12:673286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchene E, Butterlin G, Claudel P, Dumas V, Jaegli N et al (2009) A grapevine (Vitis vinifera L.) deoxy-d-xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theor Appl Genet 118(3):541–552

    Article  CAS  PubMed  Google Scholar 

  • Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot J-M et al (2010) A candidate gene association study on Muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M et al (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enfissi EM, Drapal M, Perez-Fons L, Nogueira M, Berry HM et al (2021) New plant breeding techniques and their regulatory implications: an opportunity to advance metabolomics approaches. J Plant Physiol 258:153378

    Article  PubMed  Google Scholar 

  • Eyduran SP, Akin M, Ercisli S, Eyduran E, Maghradze D (2015) Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of eastern Turkey. Biol Res 48:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Falchi R, Wong DCJ, Yan Y, Savoi S, Gambetta GA, Castellarin SD (2019) The genomics of grape berry ripening. In: Cantu D, Walker MA (eds) The grape genome. Springer International Publishing, Cham, pp 247–274

    Chapter  Google Scholar 

  • FAO, OIV (2016) FAO-OIV Focus 2016. Table and dried grapes. Non-alcoholic products of the vitivinicultural sector intended for human consumption. Published by theFood and Agriculture Organization of the United Nationsand theInternational Organisation of Vine and Wine

    Google Scholar 

  • Ferhi S, Santaniello S, Zerizer S, Cruciani S, Fadda A et al (2019) Total phenols from grape leaves counteract cell proliferation and modulate apoptosis-related gene expression in MCF-7 and HepG2 human cancer cell lines. Molecules 24:612

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrandino A, Guidoni S (2010) Anthocyanins, flavonols and hydroxycinnamates: an attempt to use them to discriminate Vitis vinifera L. cv ‘Barbera’ clones. Eur Food Res Technol 230:417–427

    Article  CAS  Google Scholar 

  • Ferreira V, Pinto-Carnide O, Arroyo-Garcia R, Castro I (2018) Berry color variation in grapevine as a source of diversity. Plant Physiol Biochem 132:696–707

    Article  CAS  PubMed  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A et al (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabaston J, Fonayet JV, Franc C, Waffo-Teguo P, De Revel G et al (2020) Characterization of stilbene composition in grape berries from wild Vitis species in year-to-year harvest. J Agric Food Chem 68:13408–13417

    Article  CAS  PubMed  Google Scholar 

  • Gatto P, Vrhovsek U, Muth J, Segala C, Romualdi C et al (2008) Ripening and genotype control stilbene accumulation in healthy grapes. J Agric Food Chem 56:11773–11785

    Article  CAS  PubMed  Google Scholar 

  • Giudice G, Moffa L, Varotto S, Cardone MF, Bergamini C et al (2021) Novel and emerging biotechnological crop protection approaches. Plant Biotechnol J 19:1495–1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X et al (2019) PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol 16:504–517

    Article  Google Scholar 

  • Gray DJ, Li ZT, Dhekney SA (2014) Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Sci 228:3–10

    Article  CAS  Google Scholar 

  • Guo DL, Zhao HL, Li Q, Zhang GH, Jiang JF et al (2019) Genome-wide association study of berry related traits in grape (Vitis vinifera L.) based on genoty**-by-sequencing markers. Hortic Res 6:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Dey S, Marbaniang D, Pal P, Ray S et al (2020) Grape seed extract: having a potential health benefits. J Food Sci Technol 57(4):1205–1215

    Article  CAS  PubMed  Google Scholar 

  • Hall D, De Luca V (2007) Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J 49:579–591

    Article  CAS  PubMed  Google Scholar 

  • Herman F, Westfall S, Brathwalte J, Passinetti GM (2018) Suppression of presymptomatic oxidative stress and inflammation in neurodegeneration by grape-derived polyphenols. Front Pharmacol 9:867

    Article  PubMed  PubMed Central  Google Scholar 

  • Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR et al (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25:4135–4149

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou D, He F, Ma L, Cao M, Zhou Z et al (2018) The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem 57:197–205

    Article  CAS  PubMed  Google Scholar 

  • Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y et al (2012) Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus map**. BMC Plant Biol 12:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YF, Vialet S, Guiraud JL, Torregrosa L, Bertrand Y et al (2014) A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus map** in the grape berry. New Phytol 201(3):795–809

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim S, Saleem B, Naeem M, Arain S, Khan M (2021) Next-generation technologies for iron and zinc biofortification and bioavailability in cereal grains. Crop Pasture Sci 73:77–92

    Article  Google Scholar 

  • Ilc T, Werck-Reichhart D, Navrot N (2016) Meta-analysis of the core aroma components of grape and wine aroma. Front Plant Sci 7:1472

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur N, Alok A, Kumar P, Kaur N, Awasthi P et al (2020) CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metabol Engg 59:76–86

    Article  CAS  Google Scholar 

  • Khalil AM (2020) The genome editing revolution: review. J Genet Engg Biotechnol 18:68

    Article  Google Scholar 

  • Khalil S, Tello J, Hamed F, Forneck A (2017) A multivariate approach for the ampelographic discrimination of grapevine (Vitis vinifera) cultivars: application to local Syrian genetic resources. Genet Resour Crop Evol 64(8):1841–1851

    Article  CAS  Google Scholar 

  • Ko SH, Kim HS (2020) Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients 12:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kong J, Wu J, Guan L, Hilbert G, Delrot S et al (2021) Metabolite analysis reveals distinct spatio-temporal accumulation of anthocyanins in two teinturier variants of cv. ‘Gamay’ grapevines (Vitis vinifera L.). Planta 253:84

    Article  CAS  PubMed  Google Scholar 

  • Lashbrooke JG, Young PR, Dockrall SJ, Vasanth K, Vivier MA (2013) Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biol 13:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon AF et al (2018) Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS One 13(2):e0192540

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee L-Y, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Talcott ST (2004) Fruit maturity and juice extraction influences ellagic acid derivatives and other antioxidant polyphenolics in Muscadine grapes. J Agric Food Chem 52:361–366

    Article  CAS  PubMed  Google Scholar 

  • Lemos AM, Machado N, Egea-Cortines M, Barros AI (2020) Assessment of quality parameters and phytochemical content of thirty ‘Tempranillo’ grape clones for varietal improvement in two distinct subregions of Douro. Sci Hort 262(109096):109096

    Google Scholar 

  • Leng X, Wang P, Wang C, Zhu X, Li X et al (2017) Genome-wide identification and characterization of genes involved in carotenoid metabolic in three stages of grapevine fruit development. Sci Rep 7:4216

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X-Y, Wen Y-Q, Meng N, Qian X, Pan Q-H (2017) Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis vinifera varieties. Front Plant Sci 8:1226

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Chen T, Wang R, Luo JY, He JJ et al (2019) Plant MIR156 regulates intestinal growth in mammals by targeting the Wnt/β-catenin pathway. Am J Physiol-Cell Physiol 317:434–448

    Google Scholar 

  • Li D, Yang J, Yang Y, Liu J, Li H et al (2021a) A timely review of cross-kingdom regulation of plant-derived microRNAs. Front Genet 12:613197

    Google Scholar 

  • Li Y, Li W, Li J (2021b) The CRISPR/Cas9 revolution continues: from base editing to prime editing in plant science. J Genet Genomics 48:661–670

    Google Scholar 

  • Liang Z, Owens CL, Zhong G-Y, Cheng L (2011) Polyphenolic profiles detected in the ripe berries of Vitis vinifera germplasm. Food Chem 129:940–950

    Google Scholar 

  • Liang Z, Yang Y, Cheng L, Zhong GY (2012) Polyphenolic composition and content in the ripe berries of wild Vitis species. Food Chem 132:730–738

    Article  CAS  Google Scholar 

  • Liang G, Zhu Y, Sun B, Shao Y, **g A et al (2014) Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr 2:380–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang ZC, Duan S, Sheng J, Zhu S, Ni X et al (2019) Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Commun 10:1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lijavetzky D, Ruiz-Garcia L, Cabezas JA, De Andres MT, Bravo G et al (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genomics 276(5):427–435

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Massonnet M, Cantu D (2019) The genetic basis of grape and wine aroma. Hortic Res 6:1–24

    Article  Google Scholar 

  • Litz RE, Pliego-Alfaro F, Hormaza JI (2020) Biotechnology of fruit and nut crops 2nd edition. CABI Publishing, Wallingfor, Oxfordshire, UK

    Book  Google Scholar 

  • Luan F, Mosandl A, Münch A, Wüst M (2005) Metabolism of geraniol in grape berry mesocarp of Vitis vinifera L. cv. Scheurebe: demonstration of stereoselective reduction, E/Z-isomerization, oxidation and glycosylation. Phytochemistry 66:295–303

    Article  CAS  PubMed  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maia M, Cavaco AR, Laureano G, Cunha J, Eiras Dias E et al (2021) More than just wine: the nutritional benefits of grapevine leaves. Foods 10:2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malacarne G, Costantini L, Coller E, Battilana J, Velasco R et al (2015) Regulation of flavonol content and composition in (Syrah × pinot noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. J Exp Bot 66(15):4441–4453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M et al (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateo JJ, Jiménez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881:557–567

    Article  CAS  PubMed  Google Scholar 

  • Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702

    Article  CAS  PubMed  Google Scholar 

  • Mattivi F, Vrhovsek U, Masuero D, Trainotti D (2009) Differences in the amount and structure of extractable skin and seed tannins amongst red grape varieties. Aust J Grape Wine Res 15:27–35

    Article  CAS  Google Scholar 

  • Melino VJ, Soole KL, Ford CM (2009) Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol 9:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Migicovsky Z, Sawler J, Gardner KM, Aradhya MK, Prins BH et al (2017) Patterns of genomic and phenomic diversity in wine and table grapes. Hortic Res 4:17035

    Article  PubMed  PubMed Central  Google Scholar 

  • Milella RA, Gasparro M, Alagna F, Cardone MF, Rotunno S et al (2020) Gene expression signature induced by grape intake in healthy subjects reveals widespread beneficial effects on peripheral blood mononuclear cells. J Funct Foods 64:103705

    Article  CAS  Google Scholar 

  • Miller K, Eggenberger AL, Lee K, Liu F, Kang M et al (2021) An improved biolistic delivery and analysis method for evaluation of DNA and CRISPR-Cas delivery efficacy in plant tissue. Sci Rep 11:1–11

    Article  Google Scholar 

  • Molla KA, Sretenovic S, Bansal KC, Qi Y (2021) Precise plant genome editing using base editors and prime editors. Nat Plants 7:1166–1187

    Article  CAS  PubMed  Google Scholar 

  • Morales-Castilla I, García de Cortázar-Atauri I, Cook BI, Lacombe T, Parker A et al (2020) Diversity buffers winegrowing regions from climate change losses. Proc Natl Acad Sci USA, vol 117, p 2864

    Google Scholar 

  • Muñoz C, Gomez-Talquenca S, Chialva C, Ibáñez J, Martínez-Zapater JM et al (2014) Relationships among gene expression and anthocyanin composition of Malbec grapevine clones. J Agric Food Chem 62:6716–6725

    Article  PubMed  Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F et al (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci U S A 108(9):3457–3458

    Article  Google Scholar 

  • Najera VA, Twyman RM, Christou P, Zhu C (2019) Applications of multiplex genome editing in higher plants. Curr Opin Biotechnol 59:93–102

    Article  Google Scholar 

  • Nash V, Ranadheera S, Georgouspoulou EN, Mellor DD, Panagiotakos DB et al (2018) The effects of grape and red wine polyphenols on gut microbiota – a systematic review. Food Res Int 113:277–287

    Article  CAS  PubMed  Google Scholar 

  • Ndlovu T, van Jaarsveld F, Caleb OJ (2019) French and Mediterranean-style diets: contradictions, misconceptions and scientific facts – a review. Food Res Int 116:840–858

    Article  PubMed  Google Scholar 

  • Nicolas SD, Péros JP, Lacombe T, Launay A, Le Paslier M-C et al (2016) Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol 16:74

    Article  PubMed  PubMed Central  Google Scholar 

  • OIV (2019) 2019 statistical report on world Vitiviniculture. Organisation Internationale de la Vigne et du Vin

    Google Scholar 

  • Paim Pinto DL, Brancadoro L, Dal Santo S, De Lorenzis G, Pezzotti M et al (2016) The influence of genotype and environment on small RNA profiles in grapevine berry. Front Plant Sci 7:1459

    Article  PubMed  PubMed Central  Google Scholar 

  • Panda G, Ray A (2022) Decrypting the mechanistic basis of CRISPR/Cas9 protein. Progr Biophys Mol Biol 172:60–67

    Article  CAS  Google Scholar 

  • Pantelić M, DabićZagorac D, Natić M, GasÏić U, Jović S et al (2016) Impact of clonal variability on phenolics and radical scavenging activity of grapes and wines: a study on the recently developed merlot and cabernet Franc clones (Vitis vinifera L.). PLoS ONE 11(10):e0163823

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastrana-Bonilla E, Akoh CC, Sellappan S, Krewer G (2003) Phenolic content and antioxidant capacity of muscadine grapes. J Agric Food Chem 51:5497–5503

    Article  CAS  PubMed  Google Scholar 

  • Pedneault K, Provost C (2016) Fungus resistant grape varieties as a suitable alternative for organic wine production: benefits, limits, and challenges. Sci Hortic 208:57–77

    Article  CAS  Google Scholar 

  • Péros JP, Cousins P, Launay A, Cubry P, Walker A et al (2021) Genetic diversity and population structure in Vitis species illustrate phylogeographic patterns in eastern North America. Mol Ecol 30:2333–2348

    Article  PubMed  Google Scholar 

  • Pertot I, Caffi T, Rossi V, Mugnai L, Hoffmann C et al (2017) A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Protec 97:70–84

    Article  CAS  Google Scholar 

  • Pinasseau L, Vallverdú-Queralt A, Verbaere A, Roques M, Meudec E et al (2017) Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci 8:1826

    Article  PubMed  PubMed Central  Google Scholar 

  • Pintać D, Cetojević-Simin D, Berežni S, Orčić D, Mimica-Dukić N et al (2019) Investigation of the chemical composition and biological activity of edible grapevine (Vitis vinifera L.) leaf varieties. Food Chem 286:686–695

    Article  PubMed  Google Scholar 

  • Rasines-Perea Z, Teissedre PL (2017) Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules 22(1):68

    Article  PubMed  PubMed Central  Google Scholar 

  • Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  PubMed  Google Scholar 

  • Revilla E, Carrasco D, Carrasco V, Benito A, Arroyo-Garcia R (2012) On the absence of acylated anthocyanins in some wild grapevine accessions. Vitis 51(4):161–165

    CAS  Google Scholar 

  • Röckel F, Moock C, Braun C, Schwander F, Cousins P et al (2020) Color intensity of the red-fleshed berry phenotype of Vitis vinifera Teinturier grapes varies due to a 408 bp duplication in the promoter of VvmybA1. Genes 11:891

    Article  PubMed  PubMed Central  Google Scholar 

  • Royo C, Ferradás Y, Martínez-Zapater JM, Motilva MJ (2021) Characterization of Tempranillo negro (VN21), a high phenolic content grapevine Tempranillo clone, through UHPLC-QqQ-MS/MS polyphenol profiling. Food Chem 360(130049):130049

    Article  CAS  PubMed  Google Scholar 

  • Sanchita Trivedi R, Asif MH, Trivedi PK (2018) Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation. RNA Biol 15(12):1433–1439

    Article  PubMed  Google Scholar 

  • Sandhya D, Jogam P, Allini VR, Abbagani S, Alok A (2020) The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Genet Engg Biotechnol 18:1–11

    Google Scholar 

  • Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E et al (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sefton MA, Skouroumounis GK, Elsey GM, Taylor DK (2011) Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages. J Agric Food Chem 59:9717–9746

    Article  CAS  PubMed  Google Scholar 

  • Siebert TE, Wood C, Elsey GM, Pollnitz AP (2008) Determination of rotundone, the pepper aroma impact compound, in grapes and wine. J Agric Food Chem 56:3745–3748

    Article  CAS  PubMed  Google Scholar 

  • Sikuten I, Stambuk P, Tomaz I, Marchal C, Kontic JK et al (2021) Discrimination of genetic and geographical groups of grape varieties (Vitis vinifera L.) based on their polyphenolic profiles. J Food Comp Anal 102:104062

    Article  CAS  Google Scholar 

  • Singh CK, Liu X, Ahmad N (2015) Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci 1348:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Li S, Jiang J, Tang X, Fan X et al (2020) New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map. BMC Plant Biol 20:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunitha S, Rock CD (2020) CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14. Transgenic Res 29:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svezia B, Cabiati M, Matteucci M, Passino C, Pè ME et al (2020) Tuscany Sangiovese grape juice imparts cardioprotection by regulating gene expression of cardioprotective C-type natriuretic peptide. Eur J Nutr 59(7):2953–2968

    Article  CAS  PubMed  Google Scholar 

  • Tangolar SG, Özogul F, Tangolar S, Yagmur C (2011) Tocopherol content in fifteen grape varieties obtained using a rapid HPLC method. J Food Comp Anal 24:481–486

    Article  CAS  Google Scholar 

  • Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H (2013) Berry phenolics of grapevine under challenging environments. Int J Mol Sci 14:18711–18739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terrier N, Torregrosa L, Ageorges A, Vialet S, Verriès C et al (2009) Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol Biochem 149(2):1028–1041

    CAS  Google Scholar 

  • This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730

    Article  PubMed  Google Scholar 

  • Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R (2011) New horizons for grapevine breeding. Fruit veg Cereal Sci Biotechnol 5:79–100

    Google Scholar 

  • Tu M, Fang J, Zhao R, Liu X, Yin W et al (2022) CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). Hortic Res 9:uhac022

    Article  PubMed  PubMed Central  Google Scholar 

  • Tutino V, De Nunzio V, Milella RA, Gasparro M, Cisternino AM et al (2021) Impact of fresh table grape intake on circulating microRNAs levels in healthy subjects: a significant modulation of gastrointestinal cancer-related pathways. Mol Nutr Food Res 65:2100428

    Article  CAS  Google Scholar 

  • Ulaszewska M, Garcia-Aloy M, Vázquez-Manjarrez N, Soria-Florido MT, Llorach R et al (2020) Food intake biomarkers for berries and grapes. Genes Nutr 15:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unusan N (2020) Proanthocyanidins in grape seeds: an updated review of their health benefits and potential uses in the food industry. J Funct Foods 67(103861):103861

    Article  CAS  Google Scholar 

  • van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

    Article  PubMed  Google Scholar 

  • Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T et al (2019) Genome editing in plants: exploration of technological advancements and challenges. Cell 8:1386

    Article  CAS  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR et al (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49(5):772–785

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yan A, Sun L, Zhang G, Wang X et al (2020) Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC Plant Biol 20:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Zhang C, Zhang H, Zhu H (2021) CRISPR/Cas9-mediated gene editing revolutionizes the improvement of horticulture food crops. J Agric Food Chem 69:13260–13269

    Article  CAS  PubMed  Google Scholar 

  • Wightman JD, Heuberger RA (2014) Effect of grape and other berries on cardiovascular health. J Sci Food Agric 95:1584–1597

    Article  PubMed  Google Scholar 

  • Wolkovich EM, García de Cortázar-Atauri I, Morales-Castilla I, Nicholas KA, Lacombe T (2018) From pinot to **nomavro in the world’s future wine-growing regions. Nat Clim Chang 8:29–37

    Article  Google Scholar 

  • Yang J, **ao Y-Y (2013) Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr 53(11):1202–1225

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shi Z, Reheman A, ** JW, Li C et al (2012) Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: novel protective roles against cardiovascular diseases. PLoS One 7(5):e37323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Guo Y, Zhu J, Niu Z, Shi G et al (2017) Genetic diversity and association study of aromatics in grapevine. J Am Soc Hortic Sci 142(3):225–231

    Article  CAS  Google Scholar 

  • Yang J, Elbaz-Younes I, Primo C, Murungi D, Hirschi KD (2018) Intestinal permeability, digestive stability and oral bioavailability of dietary small RNAs. Sci Rep 8:10253

    Article  PubMed  PubMed Central  Google Scholar 

  • Young PR, Lashbrooke JG, Alexandersson E, Jacobson D, Moser C et al (2012) The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L. BMC Genomics 13:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuzuak S, **e D-Y (2022) Anthocyanins from muscadine (Vitis rotundifolia) grape fruit. Curr Plant Biol 30(100243):100243

    Article  CAS  Google Scholar 

  • Zhang L, Hou D, Chen X, Li D, Zhu L et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22(1):107–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Liu Z, Guan L, Zheng Y, Jiu S et al (2018) Changes of anthocyanin component biosynthesis in ‘summer black’ grape berries after the red flesh mutation occurred. J Agric Food Chem 66:9209–9218

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Sang X, Hou D, Chen J, Gu H et al (2019) Plant-derived RNAi therapeutics: a strategic inhibitor of HBsAg. Biomaterials 210:83–93

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Kuijer HN, Al-Babili S (2021) Carotenoid biofortification of crops in the CRISPR era. Trends Biotechnol 39:857–860

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Nerva or Stefania Savoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tello, J. et al. (2023). Grapes: A Crop with High Nutraceuticals Genetic Diversity. In: Kole, C. (eds) Compendium of Crop Genome Designing for Nutraceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-19-3627-2_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3627-2_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3627-2

  • Online ISBN: 978-981-19-3627-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation