Agricultural Lignocellulosic Waste for Bioethanol Production

  • Chapter
  • First Online:
Novel Feedstocks for Biofuels Production

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 305 Accesses

Abstract

The ever-increasing energy demands and rapidly depleting resources of fossil fuels have perplexed both the automobile and the petroleum industry. Global over-exploitation of such natural resources to meet the fuel demands has led to concerns regarding fuel price inflation and environmental pollution. Alternative fuel resources as the clean, safe and sustainable energy deliverables have been looked upon as the future of this industry. Yearlong cyclical production of enormous agricultural waste useful as a potential feedstock for biofuel/ethanol production has spurred a ray of hope through technological advancements in the fields of metabolic engineering, bioprocess technology and new age biorefinery models. Bioethanol production from agricultural waste essentially rich in lignocellulosic biomass (LB) presents an interesting multifaceted delivery system even for lignin valorization to obtain valuable phenolic co-products along with ethanol which is based on a next-generation zero-waste biorefinery concept. The chapter makes the reader dive deep into technological advancements in the field, providing a sufficient detail of steps involved in LB-based bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abril D, Abril A (2009) Ethanol from lignocellulosic biomass. Ciencia e investigación agraria 36(2):163–176

    Article  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  PubMed  Google Scholar 

  • Aldaeus F, Larsson K, Srndovic JS, Kubat M, Karlström K, Peciulyte A, Olsson L, Larsson PT (2015) The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability. Cellulose 22(6):3991–4002

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol 101(13):4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Amelio A, Genduso G, Vreysen S, Luis P, Van der Bruggen B (2014) Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives. Green Chem 16(6):3045–3063

    Article  CAS  Google Scholar 

  • Amin FR, Khalid H, Zhang H, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7(1):72

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28(3):308–324

    Article  PubMed  Google Scholar 

  • Aristizábal-Marulanda V, Cardona Alzate CA (2019) Methods for designing and assessing biorefineries. Biofuels Bioprod Biorefin 13(3):789–808

    Article  Google Scholar 

  • Arora R, Behera S, Kumar S (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renew Sust Energ Rev 51:699–717

    Article  CAS  Google Scholar 

  • Asim AM, Uroos M, Naz S, Sultan M, Griffin G, Muhammad N, Khan AS (2019) Acidic ionic liquids: promising and cost-effective solvents for processing of lignocellulosic biomass. J Mol Liq 287:110943

    Article  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19(5):414–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auxenfans T, Crônier D, Chabbert B, Paës G (2017a) Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnol Biofuels 10(1):1–16

    Article  Google Scholar 

  • Auxenfans T, Terryn C, Paës G (2017b) Seeing biomass recalcitrance through fluorescence. Sci Rep 7(1):1–8

    Article  CAS  Google Scholar 

  • Avci A, Dönmez S (2006) Effect of zinc on ethanol production by two Thermoanaerobacter strains. Process Biochem 41(4):984–989

    Article  CAS  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875

    Article  CAS  Google Scholar 

  • Bali G, Meng X, Deneff JI, Sun Q, Ragauskas AJ (2015) The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. ChemSusChem 8(2):275–279

    Article  CAS  PubMed  Google Scholar 

  • Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:141

    Article  Google Scholar 

  • Baskaran S, Ahn HJ, Lynd LR (1995) Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog 11(3):276–281

    Article  CAS  Google Scholar 

  • Bekiaris G, Lindedam J, Peltre C, Decker SR, Turner GB, Magid J, Bruun S (2015) Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy. Biotechnol Biofuels 8(1):1–12

    Article  Google Scholar 

  • Bertilsson M, Olofsson K, Lidén G (2009) Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce. Biotechnol Biofuels 2(1):1–10

    Article  Google Scholar 

  • Bichot A, Delgenès J-P, Méchin V, Carrère H, Bernet N, García-Bernet D (2018) Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock. Rev Environ Sci Biotechnol 17(4):707–748

    Article  CAS  Google Scholar 

  • Bories A, Raynal J, Bazile F (1988) Anaerobic digestion of high-strength distillery wastewater (cane molasses stillage) in a fixed-film reactor. Biol Wastes 23(4):251–267

    Article  CAS  Google Scholar 

  • Bussemaker MJ, Zhang D (2013) Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biorefinery and Biofuel Applications. Ind Eng Chem Res 52(10):3563–3580

    Article  CAS  Google Scholar 

  • Cadoche L, López GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30(2):153–157

    Article  CAS  Google Scholar 

  • Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: Process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Nieves D, Saldarriaga-Hernandez S, Gutiérrez-Soto G, Rostro-Alanis M, Hernández-Luna C, Alvarez AJ, Iqbal HMN, Parra-Saldívar R (2020) Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste. Biomass Convers Biorefin 12:253–264

    Article  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  • Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Chabbert B, Terryn C, Herbaut M, Vaidya A, Habrant A, Paës G, Donaldson L (2018) Fluorescence techniques can reveal cell wall organization and predict saccharification in pretreated wood biomass. Ind Crop Prod 123:84–92

    Article  CAS  Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    Article  CAS  PubMed  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. In: Twenty-first symposium on biotechnology for fuels and chemicals. Springer

    Google Scholar 

  • Cheah WY, Sankaran R, Show PL, Ibrahim TNBT, Chew KW, Culaba A, Jo-Shu C (2020) Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J 7(1):1115

    Article  Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    Article  CAS  Google Scholar 

  • Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36(12):3541–3549

    Article  CAS  Google Scholar 

  • Clauser NM, Felissia FE, Area MC, Vallejos ME (2021) A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes. Renew Sust Energ Rev 139:110687

    Article  Google Scholar 

  • Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86(2):419–434

    Article  CAS  PubMed  Google Scholar 

  • Cobo S, Dominguez-Ramos A, Irabien A (2018) Trade-offs between nutrient circularity and environmental impacts in the management of organic waste. Environ Sci Technol 52(19):10923–10933

    Article  CAS  PubMed  Google Scholar 

  • Cook GM, Morgan HW (1994) Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfuricum) increases ethanol production in pH-controlled batch culture. Appl Microbiol Biotechnol 41(1):84–89

    Article  CAS  Google Scholar 

  • Crowe JD, Zarger RA, Hodge DB (2017) Relating nanoscale accessibility within plant cell walls to improved enzyme hydrolysis yields in corn stover subjected to diverse pretreatments. J Agric Food Chem 65(39):8652–8662

    Article  CAS  PubMed  Google Scholar 

  • Cybulska I, Chaturvedi T, Thomsen MH (2019) Lignocellulosic Thermochemical Pretreatment Processes. In: Biorefinery. Springer, pp 153–165

    Chapter  Google Scholar 

  • Dawson L, Boopathy R (2007) Use of post-harvest sugarcane residue for ethanol production. Bioresour Technol 98(9):1695–1699

    Article  CAS  PubMed  Google Scholar 

  • Devi J, Deb U, Barman S, Das S, Sundar Bhattacharya S, Fai Tsang Y, Lee J-H, Kim K-H (2020) Appraisal of lignocellusoic biomass degrading potential of three earthworm species using vermireactor mediated with spent mushroom substrate: Compost quality, crystallinity, and microbial community structural analysis. Sci Total Environ 716:135215

    Article  CAS  PubMed  Google Scholar 

  • Di Donato P, Finore I, Poli A, Nicolaus B, Lama L (2019) The production of second generation bioethanol: The biotechnology potential of thermophilic bacteria. J Clean Prod 233:1410–1417

    Article  Google Scholar 

  • Dien B, Cotta M, Jeffries T (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Wang Y, Wang H, Lin CSK, Hsu H-Y, Leu S-Y (2019) New generation urban biorefinery toward complete utilization of waste derived lignocellulosic biomass for biofuels and value-added products. Energy Procedia 158:918–925

    Article  CAS  Google Scholar 

  • Dos Reis S, Costa MAF, Peralta RM (2003) Xylanase production by a wild strain of Aspergillus nidulans. Acta Sci Biol Sci 25:221–225

    CAS  Google Scholar 

  • El Achkar JH, Lendormi T, Salameh D, Louka N, Maroun RG, Lanoisellé J-L, Hobaika Z (2018) Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresour Technol 247:881–889

    Article  PubMed  Google Scholar 

  • Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267

    Article  CAS  Google Scholar 

  • Fermoso FG, Serrano A, Alonso-Fariñas B, Fernández-Bolaños J, Borja R, Rodríguez-Gutiérrez G (2018) Valuable compound extraction, anaerobic digestion, and composting: a leading biorefinery approach for agricultural wastes. J Agric Food Chem 66(32):8451–8468

    Article  CAS  PubMed  Google Scholar 

  • Fernandes TV, Klaasse Bos GJ, Zeeman G, Sanders JPM, van Lier JB (2009) Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresour Technol 100(9):2575–2579

    Article  CAS  PubMed  Google Scholar 

  • Filho EX, Tuohy MG, Puls J, Coughlan MP (1991) The xylan-degrading enzyme systems of Penicillium capsulation and Talaromyces emersonii. Portland Press Ltd

    Book  Google Scholar 

  • Filip O, Janda K, Kristoufek L, Zilberman D (2019) Food versus fuel: An updated and expanded evidence. Energy Econ 82:152–166

    Article  Google Scholar 

  • Garhyan P, Elnashaie S (2004) Utilization of mathematical models to investigate the bifurcation and chaotic behavior of ethanol fermentors. Math Comput Model 39(4-5):381–427

    Article  Google Scholar 

  • Georgieva TI, Skiadas IV, Ahring BK (2007) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98(6):1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Contreras M, Lugo-Mendez H, Sales-Cruz M, Lopez-Arenas T (2020) Synthesis, design and evaluation of intensified lignocellulosic biorefineries-Case study: Ethanol production. Chem Eng Proc Proc Intensification 108220

    Google Scholar 

  • Goswami K, Choudhury HK (2019) Biofuels versus food: Understanding the trade-offs between climate friendly crop and food security. World Develop Perspect 13:10–17

    Article  Google Scholar 

  • Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technology 3(2):155–160

    Article  CAS  Google Scholar 

  • Gunasekaran P, Raj KC (1999) Ethanol fermentation technology–Zymomonas mobilis. Curr Sci 77:56–68

    CAS  Google Scholar 

  • Guo F, Shi W, Sun W, Li X, Wang F, Zhao J, Qu Y (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol Biofuels 7(1):1–10

    Article  Google Scholar 

  • Gupta R, Yadav G, Kumar G, Yadav A, Saini JK, Kuhad RC (2019) Second generation bioethanol production: the state of art. In: Sustainable approaches for biofuels production technologies, pp 121–146

    Google Scholar 

  • den Haan R, van Rensburg E, Rose SH, Görgens JF, van Zyl WH (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 33:32–38

    Article  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    Article  PubMed  Google Scholar 

  • Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Župančič S (1996) Production of fungal xylanases. Bioresour Technol 58(2):137–161

    Article  CAS  Google Scholar 

  • Hamraoui K, Gil A, El Bari H, Siles J, Chica A, Martín M (2020) Evaluation of hydrothermal pretreatment for biological treatment of lignocellulosic feedstock (pepper plant and eggplant). Waste Manag 102:76–84

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chen H (2007) Synergism between corn stover protein and cellulase. Enzym Microb Technol 41(5):638–645

    Article  CAS  Google Scholar 

  • Han Y, Chen H (2010) Synergism between hydrophobic proteins of corn stover and cellulase in lignocellulose hydrolysis. Biochem Eng J 48(2):218–224

    Article  CAS  Google Scholar 

  • Haryanto A (2012) Green House Gases Emission Reduction Potential through Wastewater Utilization in Bioethanol Industry. In: The 5th AUN/SEED-Net Regional Conference on Global Environment, Centre for Environmental Studies–Institut Teknologi Bandung

    Google Scholar 

  • Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew Sust Energ Rev 101:590–599

    Article  CAS  Google Scholar 

  • Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145(1-2):138–151

    Article  CAS  Google Scholar 

  • He Q, Chen H (2013) Pilot-Scale Gas Double-Dynamic Solid-State Fermentation for the Production of Industrial Enzymes. Food Bioprocess Technol 6(10):2916–2924

    Article  CAS  Google Scholar 

  • Herbaut M, Zoghlami A, Habrant A, Falourd X, Foucat L, Chabbert B, Paës G (2018) Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol Biofuels 11(1):1–17

    Article  Google Scholar 

  • Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 22(3):490

    Article  PubMed Central  Google Scholar 

  • Hou S, Li L (2011) Rapid Characterization of Woody Biomass Digestibility and Chemical Composition Using Near-infrared Spectroscopy Free Access. J Integr Plant Biol 53(2):166–175

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Wang Z, Sun J, Li M, Wang S, Chen K, Gao Z (2019) A microwave-assisted aqueous ionic liquid pretreatment to enhance enzymatic hydrolysis of Eucalyptus and its mechanism. Bioresour Technol 272:99–104

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenergy Res 5(4):1043–1066

    Article  CAS  Google Scholar 

  • Hu X, Cheng L, Gu Z, Hong Y, Li Z, Li C (2018) Effects of ionic liquid/water mixture pretreatment on the composition, the structure and the enzymatic hydrolysis of corn stalk. Ind Crop Prod 122:142–147

    Article  CAS  Google Scholar 

  • Huang J, Li Y, Wang Y, Chen Y, Liu M, Wang Y, Zhang R, Zhou S, Li J, Tu Y (2017) A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy. Biotechnol Biofuels 10(1):1–14

    Article  Google Scholar 

  • Huang J, **a T, Li A, Yu B, Li Q, Tu Y, Zhang W, Yi Z, Peng L (2012) A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus. Bioresour Technol 121:274–281

    Article  CAS  PubMed  Google Scholar 

  • Ioelovich M, Morag E (2011) Effect of cellulose structure on enzymatic hydrolysis. Bioresources 6(3):2818–2835

    Article  CAS  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559

    Article  CAS  Google Scholar 

  • Islam MK, Wang H, Rehman S, Dong C, Hsu H-Y, Lin CSK, Leu S-Y (2020) Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresour Technol 298:122558

    Article  CAS  PubMed  Google Scholar 

  • Jędrzejczyk M, Soszka E, Czapnik M, Ruppert AM, Grams J (2019) Chapter 6 - Physical and chemical pretreatment of lignocellulosic biomass. Elsevier, Second and Third Generation of Feedstocks. A. Basile and F. Dalena, pp 143–196

    Google Scholar 

  • Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7(2):210–218

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Eriksson T, Börjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzym Microb Technol 32(7):851–861

    Article  Google Scholar 

  • Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018

    Article  CAS  PubMed  Google Scholar 

  • Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72(6):1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Keijer T, Bakker V, Slootweg JC (2019) Circular chemistry to enable a circular economy. Nat Chem 11(3):190–195

    Article  CAS  PubMed  Google Scholar 

  • Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100(4):1515–1523

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee Y, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Um BH, Im DJ, Lee JH, Oh KK (2018) Combined Ball Milling and Ethanol Organosolv Pretreatment to Improve the Enzymatic Digestibility of Three Types of Herbaceous Biomass. Energies 11(9):2457

    Article  Google Scholar 

  • Kruyeniski J, Ferreira PJ, Carvalho MDGVS, Vallejos ME, Felissia FE, Area MC (2019) Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis. Ind Crop Prod 130:528–536

    Article  CAS  Google Scholar 

  • Kuila A, Sharma V, Garlapati VK, Singh A, Roy L, Banerjee R (2016) Present status on enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Adv Biofeedstocks Biofuels 1:85

    CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):1–19

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 103(2):252–267

    Article  CAS  PubMed  Google Scholar 

  • Lamed R, Zeikus J (1980) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141(3):1251–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168(2):114–119

    Article  CAS  PubMed  Google Scholar 

  • Le NL, Wang Y, Chung T-S (2011) Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation. J Membr Sci 379(1-2):174–183

    Article  CAS  Google Scholar 

  • Lee Y-G, ** Y-S, Cha Y-L, Seo J-H (2017) Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour Technol 228:355–361

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Li C, Chen B (2003) Extractive distillation: a review. Sep Purif Rev 32(2):121–213

    Article  CAS  Google Scholar 

  • Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A, Ramanathan V (2019) Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc Natl Acad Sci 116(15):7192–7197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leu S-Y, Zhu J (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6(2):405–415

    Article  CAS  Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xu J (2013) Optimization of microwave-assisted calcium chloride pretreatment of corn stover. Bioresour Technol 127:112–118

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wachemo AC, Yu G, Li X (2020) Enhanced anaerobic digestion performance of corn stalk pretreated with freezing-thawing and ammonia: An experimental and theoretical study. J Clean Prod 247:119112

    Article  CAS  Google Scholar 

  • Li J, Wachemo AC, Yuan H, Zuo X, Li X (2019) Natural freezing-thawing pretreatment of corn stalk for enhancing anaerobic digestion performance. Bioresour Technol 288:121518

    Article  CAS  PubMed  Google Scholar 

  • Li M, Heckwolf M, Crowe JD, Williams DL, Magee TD, Kaeppler SM, de Leon N, Hodge DB (2015) Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines. J Exp Bot 66(14):4305–4315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima L, Marcondes A (2002) Álcool Carburante: Uma Estratégia Brasileira Editora UFPR, Curitiba

    Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642

    Article  CAS  PubMed  Google Scholar 

  • Linoj K, Prabha D, Anandajit G, Sameer M (2006) Liquid biofuels in South Asia: Resources and technologies. Asian Biotechnol Develop Rev 8(2):31–49

    Google Scholar 

  • Liu H, Sun J, Chang J-S, Shukla P (2018) Engineering microbes for direct fermentation of cellulose to bioethanol. Crit Rev Biotechnol 38(7):1089–1105

    Article  CAS  PubMed  Google Scholar 

  • Liu Z-H, Qin L, Li B-Z, Yuan Y-J (2015) Physical and chemical characterizations of corn stover from leading pretreatment methods and effects on enzymatic hydrolysis. ACS Sustain Chem Eng 3(1):140–146

    Article  CAS  Google Scholar 

  • Lu M, Li J, Han L, **ao W (2019) An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose. Bioresour Technol 273:1–7

    Article  CAS  PubMed  Google Scholar 

  • Luderer G, Pehl M, Arvesen A, Gibon T, Bodirsky BL, de Boer HS, Fricko O, Hejazi M, Humpenöder F, Iyer G, Mima S, Mouratiadou I, Pietzcker RC, Popp A, van den Berg M, van Vuuren D, Hertwich EG (2019) Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat Commun 10(1):5229

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupoi JS, Singh S, Davis M, Lee DJ, Shepherd M, Simmons BA, Henry RJ (2014) High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development. Biotechnol Biofuels 7(1):1–14

    Article  CAS  Google Scholar 

  • Luzzi SC, Artifon W, Piovesan B, Tozetto E, Mulinari J, Kuhn GDO, Mazutti MA, Priamo WL, Mossi AJ, Silva MF (2017) Pretreatment of lignocellulosic biomass using ultrasound aiming at obtaining fermentable sugar. Biocatal Biotransform 35(3):161–167

    Article  CAS  Google Scholar 

  • Lv S, Yu Q, Zhuang X, Yuan Z, Wang W, Wang Q, Qi W, Tan X (2013) The influence of hemicellulose and lignin removal on the enzymatic digestibility from sugarcane bagasse. Bioenergy Res 6(4):1128–1134

    Article  CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15(5):804–816

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Hernandez E, Cui X, Scown CD, Amezcua-Allieri MA, Aburto J, Simmons BA (2019) Techno-economic and greenhouse gas analyses of lignin valorization to eugenol and phenolic products in integrated ethanol biorefineries. Biofuels Bioprod Biorefin 13(4):978–993

    Article  CAS  Google Scholar 

  • Martínez-Jaramillo JE, Arango-Aramburo S, Giraldo-Ramírez DP (2019) The effects of biofuels on food security: A system dynamics approach for the Colombian case. Sustain Energy Technol Assessments 34:97–109

    Article  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • de Melo AHF, Lopes AMM, Dezotti N, Santos IL, Teixeira GS, Goldbeck R (2020) Evolutionary engineering of two robust Brazilian industrial yeast strains for thermotolerance and second-generation biofuels. Ind Biotechnol 16(2):91–98

    Article  Google Scholar 

  • Meng X, Pu Y, Yoo CG, Li M, Bali G, Park D-Y, Gjersing E, Davis MF, Muchero W, Tuskan GA (2016) An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. ChemSusChem:10(NREL/JA-5100-67897)

    Google Scholar 

  • Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158

    Article  CAS  PubMed  Google Scholar 

  • Miliotti E, Dell’Orco S, Lotti G, Rizzo AM, Rosi L, Chiaramonti D (2019) Lignocellulosic ethanol biorefinery: Valorization of lignin-rich stream through hydrothermal liquefaction. Energies 12(4):723

    Article  CAS  Google Scholar 

  • Mota TR, Oliveira D, Marchiosi R, Ferrarese-Filho O, Santos W (2018) Plant cell wall composition and enzymatic deconstruction. AIMS Bioeng 5(1):63–77

    Article  CAS  Google Scholar 

  • Muktham R, Bhargava SK, Bankupalli S, Ball AS (2016) A review on 1st and 2nd generation bioethanol production-recent progress. J Sustain Bioenergy Syst 6(3):72–92

    Article  CAS  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabañas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Springer, Biotechnology for fuels and chemicals, pp 87–100

    Google Scholar 

  • Nonhebel S (2012) Global food supply and the impacts of increased use of biofuels. Energy 37(1):115–121

    Article  Google Scholar 

  • Noori MS, Karimi K (2016) Detailed study of efficient ethanol production from elmwood by alkali pretreatment. Biochem Eng J 105:197–204

    Article  CAS  Google Scholar 

  • Offeman RD, Stephenson SK, Robertson GH, Orts WJ (2005) Solvent extraction of ethanol from aqueous solutions. I. Screening methodology for solvents. Ind Eng Chem Res 44(17):6789–6796

    Article  CAS  Google Scholar 

  • Oh EJ, ** Y-S (2020) Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res 20(1):foz089

    Article  CAS  PubMed  Google Scholar 

  • Öhgren K, Vehmaanperä J, Siika-Aho M, Galbe M, Viikari L, Zacchi G (2007) High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzym Microb Technol 40(4):607–613

    Article  Google Scholar 

  • de Oliveira Santos VT, Siqueira G, Milagres AMF, Ferraz A (2018) Role of hemicellulose removal during dilute acid pretreatment on the cellulose accessibility and enzymatic hydrolysis of compositionally diverse sugarcane hybrids. Ind Crop Prod 111:722–730

    Article  Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1(1):1–14

    Article  Google Scholar 

  • Özdenkçi K, De Blasio C, Muddassar HR, Melin K, Oinas P, Koskinen J, Sarwar G, Järvinen M (2017) A novel biorefinery integration concept for lignocellulosic biomass. Energy Convers Manag 149:974–987

    Article  Google Scholar 

  • Paës G, Navarro D, Benoit Y, Blanquet S, Chabbert B, Chaussepied B, Coutinho PM, Durand S, Grigoriev IV, Haon M (2019) Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance. Biotechnol Biofuels 12(1):76

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan S-Y, Lin YJ, Snyder SW, Ma H-W, Chiang P-C (2015) Development of low-carbon-driven bio-product technology using lignocellulosic substrates from agriculture: Challenges and perspectives. Curr Sustain Renew Energy Rep 2(4):145–154

    Google Scholar 

  • Pan X, Gilkes N, Saddler JN (2006) Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung 60(4):398–401

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000b) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74(1):69–80

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS, Mohan R (2000a) Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour Technol 74(1):81–87

    Article  CAS  Google Scholar 

  • Pang J, Zheng M, Li X, Sebastian J, Jiang Y, Zhao Y, Wang A, Zhang T (2018) Unlock the compact structure of lignocellulosic biomass by mild ball milling for ethylene glycol production. ACS Sustain Chem Eng 7(1):679–687

    Article  Google Scholar 

  • Park J-Y, Kang M, Kim JS, Lee J-P, Choi W-I, Lee J-S (2012) Enhancement of enzymatic digestibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion. Bioresour Technol 123:707–712

    Article  CAS  PubMed  Google Scholar 

  • Peciulyte A, Karlström K, Larsson PT, Olsson L (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8(1):1–13

    Article  CAS  Google Scholar 

  • Pehl M, Arvesen A, Humpenöder F, Popp A, Hertwich EG, Luderer G (2017) Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat Energy 2(12):939–945

    Article  CAS  Google Scholar 

  • Pihlajaniemi V, Sipponen MH, Liimatainen H, Sirviö JA, Nyyssölä A, Laakso S (2016) Weighing the factors behind enzymatic hydrolyzability of pretreated lignocellulose. Green Chem 18(5):1295–1305

    Article  CAS  Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff M, Paul GS, McCormack R, Kyriazis J, Krueger T (2008) Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies 1(2):41–78

    Article  Google Scholar 

  • Prasad A, Sotenko M, Blenkinsopp T, Coles SR (2016) Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess 21(1):44–50

    Article  CAS  Google Scholar 

  • Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK (2019) Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere 231:588–606

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Dong S, Yu J, Ning X, Xu K, Zhang S-J, Xu L, Li B-Z, Li J, Yuan Y-J (2020) Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metab Eng 61:160–170

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Chen H (2012) Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol 118:8–12

    Article  CAS  PubMed  Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:6185

    Article  Google Scholar 

  • Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80:330–340

    Article  Google Scholar 

  • Ravindranath NH, Sita Lakshmi C, Manuvie R, Balachandra P (2011) Biofuel production and implications for land use, food production and environment in India. Energy Policy 39(10):5737–5745

    Article  Google Scholar 

  • Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 199:117457

    Article  CAS  Google Scholar 

  • Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun 47(1):511–513

    Article  CAS  Google Scholar 

  • Rooni V, Raud M, Kikas T (2017) The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries. Energy 139:1–7

    Article  CAS  Google Scholar 

  • Sabanci K, Buyukkileci AO (2018) Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues. Bioresour Technol 261:158–165

    Article  CAS  PubMed  Google Scholar 

  • Sáez-Miranda JC, Saliceti-Piazza L, McMillan JD (2006) Measurement and analysis of intracellular ATP levels in metabolically engineered Zymomonas mobilis fermenting glucose and xylose mixtures. Biotechnol Prog 22(2):359–368

    Article  PubMed  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Article  PubMed  Google Scholar 

  • Sannigrahi P, Kim DH, Jung S, Ragauskas A (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4(4):1306–1310

    Article  CAS  Google Scholar 

  • Serra A, Poch M, Sola C (1987) A survey of separation systems for fermentation ethanol recovery. Process Biochem 22(5):154–158

    CAS  Google Scholar 

  • Sharma B, Larroche C, Dussap C-G (2020) Comprehensive assessment of 2G bioethanol production. Bioresour Technol 123630

    Google Scholar 

  • Sharma HK, Xu C, Qin W (2019) Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valorization 10(2):235–251

    Article  CAS  Google Scholar 

  • Sheldon RA (2018) Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain Chem Eng 6(1):32–48

    Article  CAS  Google Scholar 

  • Shi J, Pu Y, Yang B, Ragauskas A, Wyman CE (2011) Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresour Technol 102(10):5952–5961

    Article  CAS  PubMed  Google Scholar 

  • Shuai L, Luterbacher J (2016) Organic Solvent Effects in Biomass Conversion Reactions. ChemSusChem 9(2):133–155

    Article  CAS  PubMed  Google Scholar 

  • Sills DL, Gossett JM (2012) Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng 109(2):353–362

    Article  CAS  PubMed  Google Scholar 

  • Silva GGD, Couturier M, Berrin J-G, Buléon A, Rouau X (2012) Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour Technol 103(1):192–200

    Article  CAS  PubMed  Google Scholar 

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st-to 2nd-generation biofuel technologies. International Energy Agency (IEA) and Organisation for Economic Co-Operation and Development, Paris

    Google Scholar 

  • Sinitsyn A, Gusakov A, Vlasenko EY (1991) Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 30(1):43–59

    Article  CAS  Google Scholar 

  • Smekenov I, Bakhtambayeva M, Bissenbayev K, Saparbayev M, Taipakova S, Bissenbaev AK (2020) Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains. Braz J Microbiol 51(1):107–123

    Article  CAS  PubMed  Google Scholar 

  • Soccol CR, de Souza Vandenberghe LP, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, da Silva Bon EP (2010) Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour Technol 101(13):4820–4825

    Article  CAS  PubMed  Google Scholar 

  • Soccol CR, Faraco V, Karp SG, Vandenberghe LP, Thomaz-Soccol V, Woiciechowski AL, Pandey A (2019) Lignocellulosic bioethanol: current status and future perspectives. In: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels. Elsevier, pp 331–354

    Chapter  Google Scholar 

  • Soto I, Achten WM, Muys B, Mathijs E (2015) Who benefits from energy policy incentives? The case of jatropha adoption by smallholders in Mexico. Energy Policy 79:37–47

    Article  Google Scholar 

  • Sovacool BK, Andersen R, Sorensen S, Sorensen K, Tienda V, Vainorius A, Schirach OM, Bjørn-Thygesen F (2016) Balancing safety with sustainability: assessing the risk of accidents for modern low-carbon energy systems. J Clean Prod 112:3952–3965

    Article  Google Scholar 

  • Sovacool BK, Kryman M, Laine E (2015) Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents. Energy 90:2016–2027

    Article  Google Scholar 

  • Su T, Zhao D, Khodadadi M, Len C (2020) Lignocellulosic biomass for bioethanol: recent advances, technology trends and barriers to industrial development. Curr Opin Green Sustain Chem 24:56–60

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh M, Karimi K (2007) Process for ethanol from lignocellulosic materials I: Acid-based hydrolysis processes. Bioresources 2(3):472–499

    CAS  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Talekar S, Patti AF, Vijayraghavan R, Arora A (2018) An integrated green biorefinery approach towards simultaneous recovery of pectin and polyphenols coupled with bioethanol production from waste pomegranate peels. Bioresour Technol 266:322–334

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Hames B, Thomas S, Warner RE (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102(24):11105–11114

    Article  CAS  PubMed  Google Scholar 

  • Tengborg C, Galbe M, Zacchi G (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol Prog 17(1):110–117

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Zang J, Pan Y, Liu J, Yuan Z, Yan Y, Yang X (2008) Construction of a recombinant yeast strain converting xylose and glucose to ethanol. Front Biol China 3(2):165–169

    Article  Google Scholar 

  • Tobin T, Gustafson R, Bura R, Gough HL (2020) Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability. Biotechnol Biofuels 13(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomas-Pejo, E., J. Oliva and M. Ballesteros (2008). Realistic approach for full-scale bioethanol production from lignocellulose: a review

    Google Scholar 

  • Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 36(5):2328–2342

    Article  CAS  Google Scholar 

  • Torres-Mayanga PC, Lachos-Perez D, Mudhoo A, Kumar S, Brown AB, Tyufekchiev M, Dragone G, Mussatto SI, Rostagno MA, Timko M, Forster-Carneiro T (2019) Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass Bioenergy 130:105397

    Article  CAS  Google Scholar 

  • Tran PHN, Ko JK, Gong G, Um Y, Lee S-M (2020) Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol Biofuels 13(1):12

    Article  CAS  Google Scholar 

  • Trincone A (2018) Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications. Molecules 23(4):901

    Article  PubMed Central  Google Scholar 

  • Tuohy M, Puls J, Claeyssens M, Vršanská M, Coughlan M (1993) The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl β-D-xylosides and unsubstituted xylans. Biochem J 290(2):515–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turconi R, Boldrin A, Astrup T (2013) Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew Sust Energ Rev 28:555–565

    Article  CAS  Google Scholar 

  • Usmani Z, Sharma M, Gupta P, Karpichev Y, Gathergood N, Bhat R, Gupta VK (2020) Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol 304:123003

    Article  CAS  PubMed  Google Scholar 

  • Utama GL, Kurnani TBA, Balia RL (2016) The isolation and identification of stress tolerance ethanol-fermenting yeasts from mozzarella cheese whey. Int J Adv Sci Eng Inform Technol 6(2):252–257

    Article  Google Scholar 

  • Vaidya AA, Donaldson LA, Newman RH, Suckling ID, Campion SH, Lloyd JA, Murton KD (2016) Micromorphological changes and mechanism associated with wet ball milling of Pinus radiata substrate and consequences for saccharification at low enzyme loading. Bioresour Technol 214:132–137

    Article  CAS  PubMed  Google Scholar 

  • Van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Biofuels:205–235

    Google Scholar 

  • Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2(6):553–588

    Article  CAS  Google Scholar 

  • Varelas V, Langton M (2017) Forest biomass waste as a potential innovative source for rearing edible insects for food and feed – A review. Innovative Food Sci Emerg Technol 41:193–205

    Article  Google Scholar 

  • Virupakshi S, Babu KG, Gaikwad SR, Naik G (2005) Production of a xylanolytic enzyme by a thermoalkaliphilic Bacillus sp. JB-99 in solid state fermentation. Process Biochem 40(1):431–435

    Article  CAS  Google Scholar 

  • Waghmare PR, Khandare RV, Jeon B-H, Govindwar SP (2018) Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production. Biofuel Res J 5(3):846–853

    Article  CAS  Google Scholar 

  • Wagner AO, Lackner N, Mutschlechner M, Prem EM, Markt R, Illmer P (2018) Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 11(7):1797

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker GM, Basso TO (2020) Mitigating stress in industrial yeasts. Fungal Biol 124(5):387–397

    Article  CAS  PubMed  Google Scholar 

  • Wang F-L, Li S, Sun Y-X, Han H-Y, Zhang B-X, Hu B-Z, Gao Y-F, Hu X-M (2017) Ionic liquids as efficient pretreatment solvents for lignocellulosic biomass. RSC Adv 7(76):47990–47998

    Article  CAS  Google Scholar 

  • Wang Q, Wang W, Tan X, Chen X, Guo Y, Yu Q, Yuan Z, Zhuang X (2019) Low-temperature sodium hydroxide pretreatment for ethanol production from sugarcane bagasse without washing process. Bioresour Technol 291:121844

    Article  CAS  PubMed  Google Scholar 

  • Wi SG, Cho EJ, Lee D-S, Lee SJ, Lee YJ, Bae H-J (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8(1):1–11

    Article  Google Scholar 

  • Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy 19(2):63–102

    Article  CAS  Google Scholar 

  • Williams DL, Crowe JD, Ong RG, Hodge DB (2017) Water sorption in pretreated grasses as a predictor of enzymatic hydrolysis yields. Bioresour Technol 245:242–249

    Article  CAS  PubMed  Google Scholar 

  • Wong KK, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12(5-6):413–435

    Article  CAS  Google Scholar 

  • Wu X-F, Yin S-S, Zhou Q, Li M-F, Peng F, **ao X (2019) Subcritical liquefaction of lignocellulose for the production of bio-oils in ethanol/water system. Renew Energy 136:865–872

    Article  CAS  Google Scholar 

  • **a J, Yang Y, Liu C-G, Yang S, Bai F-W (2019) Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends Biotechnol 37(9):960–972

    Article  CAS  PubMed  Google Scholar 

  • Xu A, Zhang Y, Zhao Y, Wang J (2013) Cellulose dissolution at ambient temperature: Role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr Polym 92(1):540–544

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Che X, Ding Y, Kong Y, Li B, Tian W (2019) Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresour Technol 279:271–280

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113(6):1213–1224

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Vera JM, Grass J, Savvakis G, Moskvin OV, Yang Y, McIlwain SJ, Lyu Y, Zinonos I, Hebert AS (2018) Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol Biofuels 11(1):1–20

    Article  Google Scholar 

  • Yao L, Yoo CG, Meng X, Li M, Pu Y, Ragauskas AJ, Yang H (2018b) A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment. Biotechnol Biofuels 11(1):1–11

    Article  Google Scholar 

  • Yao Y, Bergeron AD, Davaritouchaee M (2018a) Methane recovery from anaerobic digestion of urea-pretreated wheat straw. Renew Energy 115:139–148

    Article  CAS  Google Scholar 

  • Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72(3):805–810

    Article  CAS  PubMed  Google Scholar 

  • Yu H, **ao W, Han L, Huang G (2019) Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresour Technol 282:69–74

    Article  CAS  PubMed  Google Scholar 

  • Zakaria MR, Fujimoto S, Hirata S, Hassan MA (2014) Ball Milling Pretreatment of Oil Palm Biomass for Enhancing Enzymatic Hydrolysis. Appl Biochem Biotechnol 173(7):1778–1789

    Article  CAS  PubMed  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100(9):2580–2587

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Chen H (2009) Synergistic effect of feruloyl esterase and cellulase in hydrolyzation of steam-exploded rice straw. Sheng wu gong cheng xue bao= Chin J Biotechnol 25(1):49–54

    CAS  Google Scholar 

  • Zentou H, Abidin ZZ, Yunus R, Awang Biak DR, Korelskiy D (2019) Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes 7(7):458

    Article  CAS  Google Scholar 

  • Zhang H, Li J, Huang G, Yang Z, Han L (2018) Understanding the synergistic effect and the main factors influencing the enzymatic hydrolyzability of corn stover at low enzyme loading by hydrothermal and/or ultrafine grinding pretreatment. Bioresour Technol 264:327–334

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresour Technol 199:21–33

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Hu J, Lee D-J (2017) Pretreatment of biomass using ionic liquids: Research updates. Renew Energy 111:77–84

    Article  CAS  Google Scholar 

  • Zhang Y, Fu X, Chen H (2012) Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells-Optimization of fermentation of corn straw hydrolysates. Bioresour Technol 121:100–104

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

  • Zhao C, Shao Q, Chundawat SP (2020) Recent advances on ammonia-based pretreatments of lignocellulosic biomass. Bioresour Technol 298:122446

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Chen H (2013) Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chem Eng Sci 104:1036–1044

    Article  CAS  Google Scholar 

  • Zhao X, Zhang K, Li XG, Li YJ, Zhang K, Li SW (2009) Deformation Behavior and Dynamic Recrystallization of As-Cast Mg-Y-Nd-Gd-Zr Alloy: A Study with Processing Map. Mater Sci Forum 610-613:815–821

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012a) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012b) Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Biorefin 6(5):561–579

    Article  CAS  Google Scholar 

  • Zheng A, Zhao Z, Huang Z, Zhao K, Wei G, Jiang L, Wang X, He F, Li H (2015) Overcoming biomass recalcitrance for enhancing sugar production from fast pyrolysis of biomass by microwave pretreatment in glycerol. Green Chem 17(2):1167–1175

    Article  CAS  Google Scholar 

  • Zheng L, Han X, Han T, Liu G, Bao J (2020) Formulating a fully converged biorefining chain with zero wastewater generation by recycling stillage liquid to dry acid pretreatment operation. Bioresour Technol 318:124077

    Article  CAS  PubMed  Google Scholar 

  • Zoghlami A, Paës G (2019) Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front Chem 7:874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Begde, D. (2022). Agricultural Lignocellulosic Waste for Bioethanol Production. In: Guldhe, A., Singh, B. (eds) Novel Feedstocks for Biofuels Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-3582-4_9

Download citation

Publish with us

Policies and ethics

Navigation