The Sectionally Truncated Normal Distribution

  • Chapter
  • First Online:
Expository Moments for Pseudo Distributions

Part of the book series: Behaviormetrics: Quantitative Approaches to Human Behavior ((BQAHB,volume 2))

  • 165 Accesses

Abstract

Sectional truncation introduced by Ogasawara (J Multivar Anal [32]) is the multivariate version of stripe (tigerish) truncation proposed by Ogasawara (Commun Stat Theor Methods [31]) including usual single and double truncation as special cases. The partial derivatives of the cumulative distribution function of the normally distributed vector are derived. Using these results and the moment generating function for the normal vector under sectional truncation, moments and cumulants of the distribution are obtained. As an associated result of the Hermite polynomials found in the derivation, the product sum of natural numbers is introduced with its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aitken AC (1934) Note on selection from a multivariate normal population. Proc Edinb Math Soc 4:106–110

    Article  MATH  Google Scholar 

  2. Arismendi JC (2013) Multivariate truncated moments. J Multivar Anal 117:41–75

    Article  MathSciNet  MATH  Google Scholar 

  3. Arismendi JC, Broda S (2017) Multivariate elliptical truncated moments. J Multivar Anal 157:29–44

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold BC, Beaver RJ, Groeneveld RA, Meeker WQ (1993) The nontruncated marginal of a truncated bivariate normal distribution. Psychometrika 58:471–488

    Article  MathSciNet  MATH  Google Scholar 

  5. Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Financ 9:203–228

    Article  MathSciNet  MATH  Google Scholar 

  6. Azzalini A, Genz A, Miller A, Wichura MJ, Hill GW, Ge Y (2020) The multivariate normal and t distributions, and their truncated versions. R package version 2.0.2. https://CRAN.R-project.org/package=mnormt

  7. Barr DR, Sherill ET (1999) Mean and variance of truncated normal distributions. Am Stat 53:357–361

    Google Scholar 

  8. Birnbaum ZW (1950) Effect of linear truncation on a multinormal population. Ann Math Stat 21:272–279

    Article  MathSciNet  MATH  Google Scholar 

  9. Birnbaum ZW, Paulson E, Andrews FC (1950) On the effect of selection performed on some coordinates of a multi-dimensional population. Psychometrika 15:191–204

    Article  MathSciNet  Google Scholar 

  10. Burkardt J (2014) The truncated normal distribution, pp 1–35. http://people.sc.fsu.edu/∼jburkardt/presentations/truncatednormal.pdf

  11. Cochran WG (1951) Improvement by means of selection. In: Neyman J (ed) Proceedings of the second Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, CA, pp 449–470

    Google Scholar 

  12. Dunkl CF, Xu Y (2001) Orthogonal polynomials of several variables. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Fisher RA (1931) Introduction to mathematical tables, vol 1. British Association for the Advancement of Science, pp xxvi–xxxv. Reprinted in Fisher RA (1950) Contributions to mathematical statistics, pp 517–526 with the title “The sampling error of estimated deviates, together with other illustrations of the properties and applications of the integrals and derivatives of the normal error function” and the author’s note (CMS 23.xxva). Wiley, New York. https://digital.library.adelaide.edu.au/dspace/handle/2440/3860

  14. Galarza CE, Kan R, Lachos VH (2020) MomTrunc: moments of folded and doubly truncated multivariate distributions. R package version 5.57. https://CRAN.R-project.org/package=MomTrunc

  15. Galarza CE, Matos LA, Dey DK, Lachos VH (2022) On moments of folded and truncated multivariate extended skew-normal distributions. J Comput Graphical Stat (online published). http://doi.org/10.1080/10618600.2021.2000869

  16. Gianola D, Rosa GJM (2015) One hundred years of statistical developments in animal breeding. Annu Rev Anim Biosci 3:19–56

    Article  Google Scholar 

  17. Herrendörfer G, Tuchscherer A (1996) Selection and breeding. J Stat Plann Infer 54:307–321

    Article  MathSciNet  MATH  Google Scholar 

  18. Horrace WC (2015) Moments of the truncated normal distribution. J Prod Anal 43:133–138

    Article  Google Scholar 

  19. Kamat AR (1953) Incomplete and absolute moments of the multivariate normal distribution with some applications. Biometrika 40:20–34

    Article  MathSciNet  MATH  Google Scholar 

  20. Kamat AR (1958) Hypergeometric expansions for incomplete moments of the bivariate normal distribution. Sankhyā 20:317–320

    MathSciNet  MATH  Google Scholar 

  21. Kan R, Robotti C (2017) On moments of folded and truncated multivariate normal distributions. J Comput Graph Stat 26:930–934

    Article  MathSciNet  Google Scholar 

  22. Kemp CD, Kemp AW (1965) Some properties of the “Hermite” distribution. Biometrika 52:381–394

    MathSciNet  MATH  Google Scholar 

  23. Landsman Z, Makov U, Shushi T (2016) Multivariate tail conditional expectation for elliptical distributions. Insur Math Econ 70:216–223

    Google Scholar 

  24. Landsman Z, Makov U, Shushi T (2018) A multivariate tail covariance measure for elliptical distributions. Insur Math Econ 81:27–35

    Google Scholar 

  25. Lawley DN (1943) A note on Karl Pearson’s selection formulae. In: Proceedings of the Royal Society of Edinburgh, vol 62 (Section A, Pt. 1), pp 28–30

    Google Scholar 

  26. Magnus JR, Neudecker H (1999) Matrix differential calculus with applications in statistics and econometrics, Rev. edn. Wiley, New York

    Google Scholar 

  27. Magnus W, Oberhettinger F, Soni RP (1966) Formulas and theorems for the special functions of mathematical physics, 3rd enlarged edn. Springer, Berlin

    Google Scholar 

  28. Manjunath BG, Wilhelm S (2012) Moments calculation for the doubly truncated multivariate normal density. ar**v:1206.5387v1 [stat.CO]. 23 June 2012

  29. Nabeya S (1951) Absolute moments in 2-dimensional normal distribution. Ann Inst Stat Math 3:2–6

    Article  MathSciNet  MATH  Google Scholar 

  30. Nabeya S (1952) Absolute moments in 3-dimensional normal distribution. Ann Inst Stat Math 4:15–30

    Article  MathSciNet  MATH  Google Scholar 

  31. Ogasawara H (2021) Unified and non-recursive formulas for moments of the normal distribution with stripe truncation. Commun Stat Theor Methods (online published). http://doi.org/10.1080/03610926.2020.1867742

  32. Ogasawara H (2021) A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation. J Multivar Anal (online published). http://doi.org/10.1016/j.jmva.2021.104729

  33. Pearson K (1903) On the influence of natural selection on the variability and correlation of organs. Philos Trans R Soc Lond Ser A Containing Pap Math Phys Charact 200:1–66

    Google Scholar 

  34. Pearson K, Lee A (1908) On the generalized probable error in multiple normal correlation. Biometrika 6:59–68

    Article  Google Scholar 

  35. Stuart A, Ord JK (1994) Kendall’s advanced theory of statistics: distribution theory, 6th edn., vol 1. Arnold, London

    Google Scholar 

  36. Tallis GM (1961) The moment generating function of the truncated multi-normal distribution. J R Stat Soc B 23:223–229

    MathSciNet  MATH  Google Scholar 

  37. Tallis GM (1963) Elliptical and radial truncation in normal populations. Ann Math Stat 34:940–944

    Article  MathSciNet  MATH  Google Scholar 

  38. Tallis GM (1965) Plane truncation in normal populations. J R Stat Soc B 27:301–307

    MathSciNet  MATH  Google Scholar 

  39. Yanai H, Takeuchi K, Takane Y (2011) Projection matrices, generalized inverse matrices, and singular value decomposition. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Ogasawara .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogasawara, H. (2022). The Sectionally Truncated Normal Distribution. In: Expository Moments for Pseudo Distributions. Behaviormetrics: Quantitative Approaches to Human Behavior, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-19-3525-1_1

Download citation

Publish with us

Policies and ethics

Navigation