Optical Fibers for Biophotonic Applications

  • Chapter
  • First Online:
Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 871 Accesses

Abstract

Major challenges in biophotonic applications to the life sciences include how to collect emitted low-power light (down to the nW range) from a tissue specimen and transmit it to a photon detector, how to deliver a wide range of optical power levels to a tissue area or section during different categories of therapeutic healthcare sessions, and how to access a diagnostic or treatment area within a living being with an optical detection probe or a radiant energy source in the least invasive manner. The unique physical and light-transmission properties of optical fibers enable them to help resolve such implementation issues. This chapter provides the background that is necessary to understand how optical fibers function and describes various categories of fibers that are commercially available for use in biophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Keiser, F. **ong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Opt. 19, article 080902 (2014)

    Google Scholar 

  2. D. Marcuse, Gaussian approximation of the fundamental mode of graded-index fibers. J. Opt. Soc. Am. 68, 103–109 (1978)

    Article  ADS  Google Scholar 

  3. D. Gloge, The optical fiber as a transmission medium. Rep. Progr. Phys. 42, 1777–1824 (1979)

    Article  ADS  Google Scholar 

  4. K. Petermann, Constraints for fundamental mode spot size for broadband dispersion compensated single-mode fibers. Electron. Lett. 19, 712–714 (1983)

    Article  ADS  Google Scholar 

  5. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 3rd edn. (Wiley, 2019)

    Google Scholar 

  6. G. Keiser, Fiber Optic Communications (Springer, 2021)

    Google Scholar 

  7. K. Hogari, K. Kurokawa, I. Sankawa, Influence of high-optical power light launched into optical fibers in MT connector. J. Lightw. Technol. 21(12) (2003)

    Google Scholar 

  8. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, Fiber fuse generation in single-mode fiber-optic connectors. IEEE Photon. Technol. Lett. 16(1), 174–176 (2004)

    Article  ADS  Google Scholar 

  9. R. Nazempour, Q. Zhang, R. Fu, X. Sheng, Biocompatible and implantable optical fibers and waveguides for biomedicine. Materials 11, article 1283 (2018)

    Google Scholar 

  10. A.A. Stolov, B.E. Slyman, D.T. Burgess, A.S. Hokansson, J. Li, R.S. Allen, Effects of sterilization methods on key properties of specialty optical fibers used in medical devices. Proc. SPIE 8576, article 857606 (2013)

    Google Scholar 

  11. R. Kashyap, Fiber Bragg Gratings, 2nd edn. (Academic, 2010)

    Google Scholar 

  12. C. Broadway, R. Min, A.G. Leal-Junior, C. Marques, C. Caucheteur, Toward commercial polymer fiber Bragg grating sensors: review and applications. J. Lightw. Technol. 37(11), 2605–2615 (2019)

    Article  ADS  Google Scholar 

  13. D. Lo Presti et al., Fiber Bragg gratings for medical applications and future challenges: a review. IEEE Access, article 156863 (2020)

    Google Scholar 

  14. V. Khalilov, J.H. Shannon, R.J. Timmerman, Improved deep UV fiber for medical and spectroscopy applications. Proc. SPIE 8938, article 89380A (2014)

    Google Scholar 

  15. F. Gebert, M.H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N.Y. Joly, P.O. Schmidt, P.S.J. Russell, Damage-free single-mode transmission of deep-UV light in hollow-core PCF. Opt. Express 22, 15388–15396 (2014)

    Google Scholar 

  16. F. Yu, M. Cann, A. Brnton, W. Wadsworth, J. Knight, Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery. Opt. Express 26(8), 10879–10887 (2018)

    Article  ADS  Google Scholar 

  17. D. Kusakari, H. Hazama, R. Kawaguchi, K. Ishii, K. Awazu, Evaluation of the bending loss of the hollow optical fiber for application of the carbon dioxide laser to endoscopic therapy. Opt. Photon. J. 3, 14–19 (2013)

    Article  ADS  Google Scholar 

  18. F.E. Seraji, A. Khodakarami, M.R. Mersagh, A review on the designed low–loss single–mode optical fiber used in fiber–to–the–home networks. Phys. Astron. Int. J. 2(3), 250–254 (2018)

    Article  Google Scholar 

  19. T.R. Woliński, Polarization in optical fibers. Acta Phys. Pol. A 95(5), 749–760 (1999)

    Article  ADS  Google Scholar 

  20. V.V. Tuchin, L.V. Wang, D.A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer, 2006)

    Google Scholar 

  21. B.E. Sherlock, C. Li, X. Zhou, A. Alfonso-Garcia, J. Bec, D. Yankelevicjh, L. Marcu, Multiscale, multispectral fluorescence lifetime imaging using a double-clad fiber. Opt. Lett. 44(9), 2302–2305 (2019)

    Article  ADS  Google Scholar 

  22. K. Beaudette, J. Li, J. Lamarre, L. Majeau, C. Boudoux, Review: double-clad fiber-based multifunctional biosensors and multimodal bioimaging systems: technology and applications. Biosensors 12, article 90 (2022)

    Google Scholar 

  23. B.J. Skutnik, B. Foley, K. Moran, Hard plastic clad silica fibers for near UV applications. Proc. SPIE 5691, 23–29 (2005)

    Article  ADS  Google Scholar 

  24. F. Yu, P. Song, D. Wu, T. Birks, D. Bird, J.C. Knight, Attenuation limit of silica-based hollow-core fiber at mid-IR wavelengths. APL Photon. 4, article 080803 (2019)

    Google Scholar 

  25. C.M. Bledt, J.A. Harrington, J.M. Kriesel, Loss and modal properties of Ag/AgI hollow glass waveguides. Appl. Opt. 51, 3114–3119 (2012)

    Article  ADS  Google Scholar 

  26. P.S.J. Russell, Photonic crystal fibers. J. Lightw. Technol. 24(12), 4729–4749 (2006)

    Article  ADS  Google Scholar 

  27. M. Large, L. Poladian, G. Barton, M.A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2008)

    Google Scholar 

  28. V. Portosi, D. Laneve, M.C. Falconi, F. Prudenzano, Review: advances on photonic crystal fiber sensors and applications. Sensors 19, article 1892 (2019)

    Google Scholar 

  29. J. Zubia, J. Arrue, Plastic optical fibers: an introduction to their technological processes and applications. Opt. Fiber Technol. 7(2), 101–140 (2001)

    Article  ADS  Google Scholar 

  30. N. Cennamo, M. Pesavento, L. Zeni, A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing. Sens. Actuators B Chem. 331, article 129393 (2021)

    Google Scholar 

  31. C.A. Bunge, T. Gries, M. Beckers, Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications (Elsevier, 2017)

    Google Scholar 

  32. J. Spigulis, Side-emitting fibers brighten our world. Opt. Photon. News 16, 36–39 (2005)

    Article  ADS  Google Scholar 

  33. H. Nguyen, M.P. Arnob, A.T. Becker, J.C. Wolfe, M.K. Hogan, P.J. Horner, W.-C. Shih, Fabrication of multi-point side-firing optical fiber by laser micro-ablation. Opt. Lett. 42(9), 1808–1811 (2017)

    Article  ADS  Google Scholar 

  34. H.K. Chandrasekharan, E.P. McShane, K. Dhaliwal, R.R. Thomson, M.G. Tanner, Ultrafast laser ablation of a multicore polymer optical fiber for multipoint light emission. Opt. Express 29(13), 20765–20775 (2021)

    Article  ADS  Google Scholar 

  35. M. Saad, Heavy metal fluoride glass fibers and their applications. Proc. SPIE 8307, article 83070N (2011)

    Google Scholar 

  36. B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011)

    Article  ADS  Google Scholar 

  37. M. Meneghetti, X. Forestier, C.R. Petersen, R. Kasztelanic, M. Klimczak, O. Bang, R. Buczyński, J. Troles, Graded index chalcogenide fibers with nanostructured core. Adv. Photon. Res. 2, article 2000091 (2021)

    Google Scholar 

  38. S. Israeli, A. Katzir, Attenuation, absorption, and scattering in silver halide crystals and fibers in the mid-infrared. J. Appl. Phys. 115, article 023104 (2014)

    Google Scholar 

  39. S. Korposh, S.W. James, S.-W. Lee, R.P. Tatam, Tapered optical fibre sensors: current trends and future perspectives (review). Sensors 19, 2194 (2019)

    Article  Google Scholar 

  40. B.A. Taha, N. Ali, N.M. Sapiee, M.M. Fadhel, R.M.M. Yeh, N.N. Baćhok, Y.A. Mashhadany, N. Arsad, Comprehensive review of tapered optical fiber configurations for sensing application: trend and challenges. Biosensors 11, 253 (2021)

    Article  Google Scholar 

  41. A. Orth, M. Ploschner, E.R. Wilson, I.S. Maksymov, B.C. Gibson, Optical fiber bundles: ultra-slim light field imaging probes. Sci. Adv. 5, article 1555 (2019)

    Google Scholar 

  42. J. Jiang, X. Zhou, J. Liu, L. Pan, Z. Pan, F. Zou, Z. Li, F. Li, X. Ma, C. Geng, J. Zuo, X. Li, Optical fiber bundle-based high-speed and precise micro-scanning for image high-resolution reconstruction. Sensors 22, article 127 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keiser, G. (2022). Optical Fibers for Biophotonic Applications. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-19-3482-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3482-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3481-0

  • Online ISBN: 978-981-19-3482-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation