Insects in Forensic Investigations

  • Chapter
  • First Online:
Insects as Service Providers

Abstract

Forensic Entomology is the study of the application of insects/arthropods in criminal investigations. The coded language of insects has been effectively decoded and used by Forensic Entomologists in solving homicidal cases. Forensic Entomologist can help to establish the post-mortem interval (PMI) of a body, geographic location of death, site of trauma and if the death has occurred due to poisoning or drug overdose. There are two ways of using insects in solving death cases: (a) Deciphering maggot age and development, (b) Insect faunal succession during different stages of decomposition. Calliphoridae (Blow flies), Sarcophagidae (Flesh flies) and Muscidae (House flies) of order Diptera (true flies) are the predominant species involved in forensic investigations. These flies possess the capability of finding a dead body within minutes following death. The flies immediately oviposit/larviposit on the carcass and larvae hatch within 12–24 h depending upon the temperature of the death scene. The larvae of these flies are voracious feeders and possess the capacity as well as capability to consume a carcass in less than a week. The close association of these immature stages on a carcass, their development rates are tapped by the forensic experts to solve homicidal cases. The carcass during decomposition undergoes rapid physical, chemical and biological changes, and attract varied groups of insects. Certain species prefer the carcass during early period of decomposition, like the true flies, some prefer the dead body during its decay or dry stage (beetles, ants) and some arrive to feed on insects present on the corpse. Therefore, with the knowledge about regional insect fauna, their succession pattern of colonization, the insect assemblage on carrion is used by an expert to calculate the minimum time since death. Besides, different groups of insect species assemblages are found on decomposing carcass in different habitats and environments. Apart from calculating Post-Mortem Interval (PMI), with the knowledge of geographical distribution of insect species, an expert can determine whether the body has been moved from one geographic location to the other. Furthermore, the insect larval forms found on a carcass could be tested for death due to drugs or poisoning as the larvae feed on flesh and accumulate drugs ingested by a deceased person. Forensic Entomology is a fast-emerging field in forensic sciences and has become an added tool in legal investigations in the developed countries. Considering the applicability of this field, it becomes imperative that this branch of forensic sciences should be encouraged, popularized, and recognised in the develo** countries as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, Z. J., & Hall, M. J. (2003). Methods used for killing and preservation of blow fly larvae, and their effect on post-mortem larval length. Forensic Science International, 138, 50–61.

    Article  Google Scholar 

  • Amendt, J., Campobasso, C. P., Gaudry, E., Reiter, C., LeBlanc, H. N., & Hall, M. J. R. (2006). Best practice in forensic entomology. International Journal of Legal Medicine. https://doi.org/10.1007/s00414-006-0086-x

  • Anderson, G. S. (2000). Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). Journal of Forensic Sciences, 45, 824–832.

    Article  CAS  Google Scholar 

  • Anderson, G. S., & Van Laerhoven, S. L. (1996). Initial studies on insect succession on carrion in southwestern British Columbia. Journal of Forensic Sciences, 41, 617–625.

    Article  Google Scholar 

  • Bharti, M. (2021). The role of cuticular hydrocarbons in forensic entomology: A mini review. Journal of Clinical and Health Sciences, 6(1), 1–7.

    Google Scholar 

  • Bharti, M., & Singh, B. (2017). DNA-based identification of forensically important blow flies (Diptera: Calliphoridae) from India. Journal of Medical Entomology, 54(5), 1151–1156.

    Article  Google Scholar 

  • Bharti, M., & Singh, D. (2003). Insect faunal succession on decaying rabbit carcasses in Punjab, India. Journal of Forensic Sciences, 48(5), 1133–1143.

    Article  Google Scholar 

  • Bunchu, N., Thaipakdee, C., Vitta, A., Sanit, S., Sukontason, K., & Sukontason, K. L. (2015). Morphology and developmental rate of the blow fly, Hemipyrellia ligurriens (Diptera: Calliphoridae): Forensic entomology applications. Parasitology Research, 114(6), 2279–2289.

    Google Scholar 

  • Byrd, J. H., & Castner, J. L. (2010). Forensic entomology: The utility of arthropods in Legal investigations (2nd ed., p. 681). CRC Press.

    Google Scholar 

  • Catts, E. P., & Haskell, N. H. (1990). Entomology and death- a procedural guide. Joyce’s Print Shop.

    Google Scholar 

  • Dekeirsschieter, J., Frederick, C., Verheggen, F. J., Drugmand, D., & Haubruge, E. (2013). Diversity of forensic rove beetles (Coleoptera: Staphylinidae) associated with decaying pig carcass in a forest biotope. Journal of Forensic Sciences, 58(4), 1032–1040.

    Article  Google Scholar 

  • Gemmellaro, M. D., Hamilton, G. C., & Ware, J. L. (2019). Review of molecular identification techniques for forensically important Diptera. Journal of Medical Entomology, 56(4), 887–902.

    Article  Google Scholar 

  • Grassberger, M., & Frank, C. (2004). Initial study of arthropod succession on pig carrion in central European urban habitat. Journal of Medical Entomology, 41(3), 511–523.

    Article  CAS  Google Scholar 

  • Grassberger, M., & Reiter, C. (2002). Effect of temperature on development of the forensically important holarctic blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Forensic Science International, 128, 177–182.

    Article  Google Scholar 

  • Greenberg, B., & Kunich, J. C. (2002). Entomology and the law-flies as forensic indicators. Cambridge University Press.

    Google Scholar 

  • Grzywacz, A., Hall, M. J. R., Pape, T., & Szpila, K. (2017). Muscidae (Diptera) of forensic importance- an identification key to third instar larvae of the western Palaearctic region and a catalogue of mucid carrion community. International Journal of Legal Medicine, 131, 855–866.

    Article  Google Scholar 

  • Grzywacz, A., & Pape, T. (2014). Larval morphology of Atherigona orientalis (Schiner) (Diptera: Muscidae)- a species of sanitary and forensic importance. Acta Tropica, 137, 174–184.

    Article  Google Scholar 

  • Haskell, N. H., Lord, W. D., & Byrd, J. H. (2001). Collection ofentomological evidence during death investigations. In ByrdJH, Castner JL (eds) forensic entomology—The utility of arthropods in legal investigations (pp. 81–120). CRC Press.

    Google Scholar 

  • Hu, G., Wang, M., Wang, Y., Tang, H., Chen, T. R., Zhang, Y., Zhao, Y., **, J. Y., Wang, Y., Wu, M., & Wang, J. (2020). Development of Necrobia rufipes (De Geer, 1775) (Coleoptera: Cleridae) under constant temperatures and its implication in forensic entomology. Forensic Science International. https://doi.org/10.1016/j.forsciint.2020.110275

  • Kamal, A. S. (1958). Comparative study of thirteen species of sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera) I. Bionomics. Annals of Entomological Society of America, 51, 261–271.

    Article  Google Scholar 

  • Kulshrestha, P., & Satpathy, D. K. (2001). Use of beetles in forensic entomology. Forensic Science International, 120(1–2), 15–17.

    Article  CAS  Google Scholar 

  • Magni, P. A., Voss, S. C., Testi, R., Borrini, M., & Dadour, I. R. (2015). A biological and procedural review of forensically significant Dermestes species (Coleoptera: Dermestidae). Journal of Medical Entomology, 52(5), 755–769.

    Article  Google Scholar 

  • Marchenko, M. I. (2001). Medicolegal relevance of cadaver entomofauna for the determination of time of death. Forensic Science International, 120, 89–109.

    Article  CAS  Google Scholar 

  • Martin, S. J., & Drijfhout, F. P. (2009). How reliable is the analysis of complex cuticular hydrocarbon profiles by multi-variate statistical methods? Journal of Chemical Ecology, 35, 375–382.

    Article  CAS  Google Scholar 

  • Merritt, R. W., & Wallace, J. R. (2010). The role of aquatic insects in forensic investigations. In J. H. Byrd & J. L. Castner (Eds.), Forensic entomology: The utility of arthropods in Legal investigations (2nd ed., pp. 271–319). CRC Press.

    Google Scholar 

  • Mondor, E. B., Tremblay, M. N., Tomberlin, J. K., Benbow, E. M., Tarone, A. M., & Crippen, T. L. (2012). The ecology of carrion decomposition. Nature Education Knowledge, 3(10), 21.

    Google Scholar 

  • Moore, H. E., Adam, C. D., & Drijfhout, F. P. (2013). Potential use of hydrocarbons for aging Luciliasericata blowfly larvae to establish the postmortem interval. Journal of Forensic Sciences, 58(2), 404–412.

    Article  CAS  Google Scholar 

  • Moore, H. E., Adam, C. D., & Drijfhout, F. P. (2014). Identifying 1st instar larvae for three forensically important blowfly species using “fingerprint” cuticular hydrocarbon analysis. Forensic Science International, 240, 48–53.

    Article  CAS  Google Scholar 

  • Moore, H. E., Butcher, J. B., Day, C. R., & Drijfhout, F. P. (2017). Adult fly age estimations using cuticular hydrocarbons and artificial neural networks in forensically important Calliphoridae species. Forensic Science International, 280, 233–244.

    Article  CAS  Google Scholar 

  • Nandi, B. C. (2012). Stuies on the larvae of flesh flies from India (Diptera: Sarcophagidae). Oriental Insects. https://doi.org/10.1080/00305316.1980.10434811

  • Payne, J. A. (1965). A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology, 46(5), 511–523.

    Article  Google Scholar 

  • Pomonis, J., & Mackley, J. (1985). Gas chromatographic composition profiles of surface lipid extracts from screwworm compared by age, sex, colonization and geography. Southwestern Entomologist, 10, 65–76.

    CAS  Google Scholar 

  • Roux, O., Gers, C., & Legal, L. (2006). When, during ontogeny, waxes in the blowfly (Calliphoridae) cuticle can act as phylogenetic markers. Biochemical Systematics and Ecology, 34(5), 406–416.

    Article  CAS  Google Scholar 

  • Schroeder, H., Klotzbach, H., Oesterhelweg, L., & Puschel, K. (2002). Larder beetles (Coleoptera, Dermestidae) as an accelerating factor for decomposition of a human corpse. Forensic Science International, 127, 231–236.

    Article  CAS  Google Scholar 

  • Shayya, S., Degallier, N., Nel, A., Azar, D., & Lackner, T. (2018). Contribution to the knowledge of Saprinus Erichson, 1834 of forensic relevance from Lebanon (Coleoptera, Histeridae). ZooKeys, 738, 117–152.

    Article  Google Scholar 

  • Singh, D., & Bharti, M. (2001). Further observations on the nocturnal oviposition behaviour of blow flies (Diptera: Calliphoridae). Forensic Science International, 120(1–2), 124–126.

    Article  CAS  Google Scholar 

  • Smith, K. G. V. (1986). A manual of forensic entomology. The Trustees.

    Google Scholar 

  • Stoffolano, J. G., Schauber, E. C., Yin, M., Tillman, J. A., & Blomquist, G. J. (1997). Cuticular hydrocarbons and their role in copulatory behavior in Phormiaregina (Meigen). Journal of Insect Physiology, 43, 1065–1076.

    Article  CAS  Google Scholar 

  • Szpila, K., & Pape, T. (2007). Rediscovery, redescription and reclassification of Beludzhia phylloteliptera (Diptera: Sacrophagidae: Miltogramminae). European Journal of Entomology, 104(1), 119–137.

    Article  Google Scholar 

  • Szpila, K., Richet, R., & Pape, T. (2015). Third instar larvae of flesh flies (Diptera: Sarcophagidae) of forensic importance- critical review of characters and key for European species. Parasitology Research. https://doi.org/10.1007/s00436-015-4421-3

  • Tantawi, T. I., & Greenberg, B. (1993). The effect of killing and preserving solutions on estimate of maggot age in forensic cases. Journal of Forensic Sciences, 38, 702–707.

    Article  CAS  Google Scholar 

  • Tomberlin, J., Mohr, R., Benbow, M., Tarone, A., & VanLaerhoven, S. L. (2010). A roadmap for bridging basic and applied research in forensic entomology. Annual Review of Entomology, 56, 401–421.

    Article  Google Scholar 

  • Villet, M. H. (2011). African carrion ecosystems and their insect communities in relation to forensic entomology. Pest Technology, 5(1), 1–15.

    Google Scholar 

  • Wang, Y., Wang, J., Wang, Z., & Tao, L. (2017). Insect succession on pig carcasses using different exposure time- a preliminary study in Guangzhou, China. Journal of Forensic and Legal Medicine, 52, 24–29.

    Article  CAS  Google Scholar 

  • Wells, J. D., & Stevens, J. R. (2008). Application of DNA-based methods in forensic entomology. Annual Review of Entomology, 53, 103–120.

    Article  CAS  Google Scholar 

  • Butterworth, N. J., Byrne, P. G., Keller, P. A., & Wallman, J. F. (2018). Body odor and sex: Do cuticular hydrocarbons facilitate sexual attraction in the small hairy maggot blowfly? Journal of Chemical Ecology, 44(3), 248–256.

    Article  CAS  Google Scholar 

  • Xu, H., Ye, G. Y., Xu, Y., Hu, C., & Zhu, G. H. (2014). Age-dependent changes in cuticular hydrocarbons of larvae in Aldrichinagrahami (Aldrich) (Diptera: Calliphoridae). Forensic Science International, 242, 236–241.

    Article  CAS  Google Scholar 

  • Ye, G., Li, K., Zu, J., Zu, G., & Hu, C. (2007). Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. Journal of Medical Entomology, 44(3), 450–456.

    Article  CAS  Google Scholar 

  • Zhu, G. H., Xu, X. H., Yu, X. J., Zhang, Y., & Wang, J. F. (2007). Puparial case hydrocarbons of Chrysomyamegacephala as an indicator of the postmortem interval. Forensic Science International, 169(1), 1–5.

    Article  CAS  Google Scholar 

  • Zhu, G. H., Ye, G. Y., Hu, C., Xu, X. H., & Li, K. (2006). Development changes of cuticular hydrocarbons in Chrysomyarufifacies larvae: Potential for determining larval age. Medical and Veterinary Entomology, 20, 438–444.

    Article  CAS  Google Scholar 

  • Zhu, G. H., Yu, X. J., **e, L. X., Luo, H., Wang, D., Lv, J. Y., & Xu, X. H. (2013). Time of death revealed by hydrocarbons of empty puparia of Chrysomyamegacephala (Fabricius) (Diptera: Calliphoridae): A field experiment. PLoS One, 8(9), 1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, M., Singh, D. (2023). Insects in Forensic Investigations. In: Omkar (eds) Insects as Service Providers. Springer, Singapore. https://doi.org/10.1007/978-981-19-3406-3_7

Download citation

Publish with us

Policies and ethics

Navigation