Cost-Aware Dynamic Task Sharing Among Decentralized Autonomous Agents: Towards Dynamic Patient Sharing Among Hospitals

  • Conference paper
  • First Online:
Agents and Multi-Agent Systems: Technologies and Applications 2022

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 306))

Abstract

In the COVID-19 pandemic era, hospitals tend to be crowded with patients. Dynamic task sharing is becoming an important research theme and can be applied to patient sharing among hospitals. Unlike in standard task scheduling, the tasks are created dynamically and asynchronously, and each agent (hospital or region) is independent. Hence, we previously designed and compared the decentralized algorithms for dynamic task sharing. However, in these algorithms, the cost of task transfers was not considered. The cost of transferring a patient to a distant hospital is high and cannot be ignored. In this paper, we present new decentralized algorithms for dynamic task sharing that consider the cost of task transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 263.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 263.74
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are 47 prefectures in Japan.

  2. 2.

    A tick corresponds to a day. It takes around 14 days to recover from COVID-19.

References

  1. Bertsekas, D.P.: The auction algorithm: a distributed relaxation method for the assignment problem. Ann. Oper. Res. 14, 105–123 (1988)

    Google Scholar 

  2. Chen, J., Yang, J., Ye, G.: Auction algorithm approaches for dynamic weapon target assignment problem. In: Proceedings of International Conference on Computer Science and Network Technology, pp. 402–405 (2015)

    Google Scholar 

  3. Choi, H.L., Brunet, L., How, J.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)

    Google Scholar 

  4. Dawe, M.: Beyond the kung-fu circle: a flexible system for managing NPC attacks. In: Game, A.I. (ed.) Pro, chap. 28, pp. 369–375 (2013)

    Google Scholar 

  5. Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. J. ACM 61(1), 1–23 (2014)

    Google Scholar 

  6. Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-agent real time scheduling system for taxi companies. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, pp. 29–36 (2009)

    Google Scholar 

  7. Hayashi, H.: Comparing repair-task-allocation strategies in MAS. In: Proceedings of International Conference on Agents and Artificial Intelligence. vol. 1, pp. 17–27 (2017)

    Google Scholar 

  8. Hayashi, H.: Integrating decentralized coordination and reactivity in MAS for repair-task allocations. In: Proceedings of International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 95–106 (2017)

    Google Scholar 

  9. Hayashi, H.: Evaluating task-allocation strategies for emergency repair in MAS. Trans. Comput. Collect. Intell. 28(LNCS 10780), 253–274 (2018)

    Google Scholar 

  10. Hayashi, H.: Comparing decentralized algorithms for dynamic task sharing among agents with limited resources. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (2021)

    Google Scholar 

  11. Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G., Castañeda, A.G., Beattie, C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A., Sonnerat, N., Green, T., Deason, L., Leibo, J.Z., Silver, D., Hassabis, D., Kavukcuoglu, K., Graepel, T.: Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science 364(6443), 859–865 (2019)

    Google Scholar 

  12. Johansson, F., Falkman, G.: Real-time allocation of firing units to hostile targets. J. Adv. Inf. Fusion 6(2), 187–199 (2011)

    Google Scholar 

  13. Mi, Z., Yang, Y., H., Wang, D.: Connectivity preserving task allocation in mobile robotic sensor network. In: Proceedings of IEEE International Conference on Communications, pp. 136–141 (2014)

    Google Scholar 

  14. Miyake, Y., Shirakami, Y., Shimokawa, K., Namiki, K., Komatsu, T., Tatsuhiro, J., Prasertvithyakarn, P., Yokoyama, T.: A character decision-making system for FINAL FANTASY XV by combining behavior trees and state machines. In: Game AI Pro 3, Chap. 11, pp. 145–157 (2019)

    Google Scholar 

  15. Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., Rodriguez-Aguilar, J.: Efficient inter-team task allocation in robocup rescue. In: Proceedings of International Conference on Autonomous Agents and Multiagent Systems, pp. 413–421 (2015)

    Google Scholar 

  16. Rahimzadeh, F., Khanli, L., Mahan, F.: High reliable and efficient task allocation in networked multi-agent systems. Auton. Agent Multi-Agent Syst. 29(6), 1023–1040 (2015)

    Google Scholar 

  17. Ramchurn, S., Wu, F., Jiang, W., Fischer, J., Reece, S., Roberts, S., Rodden, T., Greenhalgh, C., Jennings, N.: Human-agent collaboration for disaster response. Auton. Agent Multi-Agent Syst. 30(1), 82–111 (2016)

    Google Scholar 

  18. Saito, M., Hayashi, H.: P2P human-resource sharing and its redistribution strategy of stable coin. Int. J. Smart Comput. Artif. Intell. 4(2), 1–18 (2020)

    Google Scholar 

  19. Saito, M., Komine, K., Nakato, A., Sasaki, I., Hayashi, H.: Evaluating P2P human resource allocation strategies through multi-agent simulation. In: Proceedings of International Conference on Smart Computing and Artificial Intelligence, International Congress on Advanced Applied Informatics, pp. 505–510 (2019)

    Google Scholar 

  20. dos Santos, F., Bazzan, A.: Towards efficient multiagent task allocation in the robocup rescue: a biologically-inspired approach. Auton. Agent Multi-Agent Syst. 22(3), 465–486 (2011)

    Google Scholar 

  21. Seow, K.T., Dang, N.H., Lee, D.H.: A collaborative multiagent taxi-dispatch system. IEEE Trans. Autom. Sci. Eng. 7(3), 607–616 (2010)

    Google Scholar 

  22. Skocir, P., Kusek, M., Jezic, G.: Energy-efficient task allocation for service provisioning in machine-to-machine systems. Concurr. Comput. 29(23) (2017)

    Google Scholar 

  23. Straatman, R., Verweij, T., Champandard, A., Morcus, R., Kleve, H.: Hierarchical AI for multiplayer bots in Killzone 3. In: Game AI Pro, Chap. 29, pp. 377–390 (2013)

    Google Scholar 

  24. Vallejo, D., Remagnino, P., Monekosso, D., Jiménez, L., González, C.: A multi-agent architecture for multi-robot surveillance. In: Proceedings of IEEE International Symposium on Parallel and Distributed Processing with Applications, pp. 11–18 (2009)

    Google Scholar 

  25. Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M., Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J., Jaderberg, M., Vezhnevets, A., Leblond, R., Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y., Molloy, J., Paine, T., Gulcehre, C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C., Silver, D.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019)

    Google Scholar 

  26. **n, B., Chen, J., Zhang, J., Dou, L., Peng, Z.: Efficient decision making for dynamic weapon-target assignment by virtual permutation and tabu search heuristics. IEEE Trans. Syst. Man Cybern. - Part C 40(6), 649–662 (2010)

    Google Scholar 

  27. Yoshida, N., Noda, I., Sugawara, T.: Multi-agent service area adaptation for ride-sharing using deep reinforcement learning. In: Proceedings of International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 363–375 (2020)

    Google Scholar 

  28. Zhou, M., **, J., Zhang, W., Qin, Z., Jiao, Y., Wang, C., Wu, G., Yu, Y., Ye, J.: Multi-agent reinforcement learning for order-dispatching via order-vehicle distribution matching. In: Proceedings of International ACM International Conference on Information and Knowledge Management, pp. 2645–2653 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. 21K12144 and by JST, AIP Trilateral AI Research, Grant No. JPMJCR20G4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hayashi, H. (2022). Cost-Aware Dynamic Task Sharing Among Decentralized Autonomous Agents: Towards Dynamic Patient Sharing Among Hospitals. In: Jezic, G., Chen-Burger, YH.J., Kusek, M., Å perka, R., Howlett, R.J., Jain, L.C. (eds) Agents and Multi-Agent Systems: Technologies and Applications 2022. Smart Innovation, Systems and Technologies, vol 306. Springer, Singapore. https://doi.org/10.1007/978-981-19-3359-2_2

Download citation

Publish with us

Policies and ethics

Navigation