Reinforcing Potential of 2D Nanofiller in Polyethylene: A Molecular Dynamics Approach

  • Chapter
  • First Online:
Forcefields for Atomistic-Scale Simulations: Materials and Applications

Abstract

In this chapter, the authors have emphasized the reinforcing potential of the 2D nanofiller such as graphene and hexagonal boron nitride nanosheet in the polymer matrix nanocomposites using a molecular dynamics approach. The effect of interfacial and non-interfacial factors including state of dispersion, interface functionalization, concentration, and morphology of nanofiller on mechanical and interfacial properties of the nanocomposites are discussed in this chapter. Structural defects (such as single vacancy, double vacancy, stone–wales, and grain boundaries) and chemical modification with different functional groups in the 2D nanofiller significantly affect the load transfer capability of the interface, tensile strength, young’s modulus, and failure strain of the nanocomposites. This chapter will help in understanding the underlying load transfer mechanism of the 2D nanofiller reinforced polyethylene nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rasul, M.G., Kiziltas, A., Arfaei, B., Shahbazian-Yassar, R.: 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 5 (2021)

    Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  3. Verma, A., Parashar, A.: The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys. Chem. Chem. Phys. 19, 16023–16037 (2017)

    Article  CAS  Google Scholar 

  4. Rajasekaran, G., Narayanan, P., Parashar, A.: Effect of point and line defects on mechanical and thermal properties of graphene: a review. Crit. Rev. Solid State Mater. Sci. 41, 47–71 (2016)

    Article  CAS  Google Scholar 

  5. Verma, A., Kumar, R., Parashar, A.: Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach. Phys. Chem. Chem. Phys. 21, 6229–6237 (2019)

    Article  CAS  Google Scholar 

  6. Verma, P.K., Sharma, B.B., Chaurasia, A., Parashar, A.: Inter-granular fracture toughness of bi-crystalline graphene nanosheets. Diam. Relat. Mater. 102, 107667 (2020)

    Article  CAS  Google Scholar 

  7. Coleman, J.N., Lotya, M., Neill, A.O., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., Mccomb, D.W., Nellist, P.D., Nicolosi, V.: Produced by liquid exfoliation of layered materials. Science (80-) 331, 568–571 (2011)

    Google Scholar 

  8. Chaurasia, A., Parashar, A., Mulik, R.S.: Effect of hexagonal boron nitride nanoplatelet on crystal nucleation, mechanical behavior, and thermal stability of high-density polyethylene-based nanocomposites. Macromol. Mater. Eng. 305, 2000248 (2020)

    Article  CAS  Google Scholar 

  9. Chang, I.-L., Chen, J.-A.: The molecular mechanics study on mechanical properties of graphene and graphite. Appl. Phys. A 119, 265–274 (2015)

    Article  CAS  Google Scholar 

  10. Chaurasia, A., Parashar, A., Mulik, R.S.: Evaluation of interfacial shear strength of h-BN/PE nanocomposites using molecular dynamics. In: Advances in Engineering Design, pp. 105–13. Springer, Singapore (2021)

    Google Scholar 

  11. Chaurasia, A., Parashar, A.: Experimental and atomistic insight on the thermal transport properties of h-BN/high density polyethylene nanocomposite. Int. J. Heat Mass Transf. 170, 121039 (2021)

    Article  CAS  Google Scholar 

  12. Verma, A., Parashar, A.: Structural and chemical insights into thermal transport for strained functionalised graphene: a molecular dynamics study. Mater. Res. Express 5, 115605 (2018)

    Article  CAS  Google Scholar 

  13. Min, C., He, Z., Liang, H., Liu, D., Dong, C., Song, H., Huang, Y.: High mechanical and tribological performance of polyimide nanocomposite reinforced by fluorinated graphene oxide. Polym. Compos. 41, 1624–1635 (2020)

    Article  CAS  Google Scholar 

  14. Huang, G., Chen, S., Tang, S., Gao, J.: A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135, 938–947 (2012)

    Article  CAS  Google Scholar 

  15. Verma, A., Parashar, A.: Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput. Mater. Sci. 143, 15–26 (2018)

    Article  CAS  Google Scholar 

  16. Kubota, Y., Watanabe, K., Tsuda, O., Taniguchi, T.: Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science (80-) 317, 932–934 (2007)

    Google Scholar 

  17. Verma, A., Parashar, A., Packirisamy, M.: Tailoring the failure morphology of 2D bicrystalline graphene oxide. J. Appl. Phys. 124, 015102 (2018)

    Article  CAS  Google Scholar 

  18. Kumar, R., Parashar, A., Mertiny, P.: Displacement thresholds and knock-on cross sections for hydrogenated h-BN monolayers. Comput. Mater. Sci. 142, 82–88 (2018)

    Article  CAS  Google Scholar 

  19. Chaurasia, A., Parashar, A.: Molecular dynamics study of anisotropic shock response in mono- and bicrystalline boron nitride nanosheets: implications for shock-resistant solid-state devices. ACS Appl. Nano Mater. 5, 2787–2800 (2022)

    Article  CAS  Google Scholar 

  20. Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F., Xue, Q.: Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur. Polym. J. 48, 1026–1033 (2012)

    Article  CAS  Google Scholar 

  21. Parveen, N., Mahato, N., Ansari, M.O., Cho, M.H.: Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated temperature. Compos. Part B Eng. 87, 281–290 (2016)

    Article  CAS  Google Scholar 

  22. Gibb, A.L., Alem, N., Chen, J.H., Erickson, K.J., Ciston, J., Gautam, A., Linck, M., Zettl, A.: Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135, 6758–6761 (2013)

    Article  CAS  Google Scholar 

  23. Li, L.H., Cervenka, J., Watanabe, K., Taniguchi, T., Chen, Y.: Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457–1462 (2014)

    Article  CAS  Google Scholar 

  24. Sharma, B.B., Parashar, A.: A review on thermo-mechanical properties of bi-crystalline and polycrystalline 2D nanomaterials. Crit. Rev. Solid State Mater. Sci. 45, 134–170 (2020)

    Article  CAS  Google Scholar 

  25. Verma, A., Parashar, A.: Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide. Nanotechnology 29, 115706 (2018)

    Article  CAS  Google Scholar 

  26. Singh, S.K., Parashar, A.: Effect of lattice distortion and nanovoids on the shock compression behavior of (Co-Cr-Cu-Fe-Ni) high entropy alloy. Comput. Mater. Sci. 209, 111402 (2022)

    Article  CAS  Google Scholar 

  27. Sun, Y., Wu, Q., Shi, G.: Graphene based new energy materials. Energy Environ. Sci. 4, 1113 (2011)

    Article  CAS  Google Scholar 

  28. Kumar, R., Mertiny, P., Parashar, A.: Effects of different hydrogenation regimes on mechanical properties of h-BN: a reactive force field study. J. Phys. Chem. C 120, 21932–21938 (2016)

    Article  CAS  Google Scholar 

  29. Park, O.K., Owuor, P.S., Jaques, Y.M., Galvao, D.S., Kim, N.H., Lee, J.H., Tiwary, C.S., Ajayan, P.M.: Hexagonal boron nitride-carbon nanotube hybrid network structure for enhanced thermal, mechanical and electrical properties of polyimide nanocomposites. Compos. Sci. Technol. 188, 107977 (2020)

    Article  CAS  Google Scholar 

  30. Wang, J., Chen, Y., Li, R., Dong, H., Ju, Y., He, J., Fan, J., Wang, K., Liao, K.-S., Zhang, L., Curran, S.A., Blau, W.J.: Graphene and carbon nanotube polymer composites for laser protection. J. Inorg. Organomet. Polym. Mater. 21, 736–746 (2011)

    Article  CAS  Google Scholar 

  31. Chaurasia, A., Mulik, R.S., Parashar, A.: Deformation dynamics of h-BN reinforced polyethylene nanocomposite under shock/impact loading. Int. J. Mech. Sci. 225, 107379 (2022)

    Article  Google Scholar 

  32. Wang, X.B., Weng, Q., Wang, X., Li, X., Zhang, J., Liu, F., Jiang, X.F., Guo, H., Xu, N., Golberg, D., Bando, Y.: Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. ACS Nano 8, 9081–9088 (2014)

    Google Scholar 

  33. Ma, R., Wan, X., Zhang, T., Yang, N., Luo, T.: Role of molecular polarity in thermal transport of boron nitride-organic molecule composites. ACS Omega 3, 12530–12534 (2018)

    Article  CAS  Google Scholar 

  34. Pumera, M.: Graphene in biosensing. Mater. Today 14, 308–315 (2011)

    Article  CAS  Google Scholar 

  35. Chaurasia, A., Mulik, R.S., Parashar, A.: Polymer-based nanocomposites for impact loading: a review. Mech. Adv. Mater. Struct. 0, 1–26 (2021)

    Google Scholar 

  36. Chaurasia, A., Verma, A., Parashar, A., Mulik, R.S.: Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J. Phys. Chem. C 123, 20059–20070 (2019)

    Article  CAS  Google Scholar 

  37. Verma, A., Parashar, A., Packirisamy, M.: Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. WIREs Comput. Mol. Sci. 8 (2018)

    Google Scholar 

  38. Verma, A., Parashar, A.: Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups. Diam. Relat. Mater. 88, 193–203 (2018)

    Article  CAS  Google Scholar 

  39. Chaurasia, A., Jalan, S.K., Parashar, A.: An atomistic approach to study the dynamic and structural response in 2D nanofiller reinforced polyethylene nanocomposites under ultra-short shock pulse loading. Mech. Mater. 169, 104305 (2022)

    Google Scholar 

  40. Zhang, X., Shen, L., Wu, H., Guo, S.: Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion. Compos. Sci. Technol. 89, 24–28 (2013)

    Article  CAS  Google Scholar 

  41. Sandeep, S.K., Chaurasia, A., Parashar, A.: Atomistic simulations to study shock and ultrashort pulse response of high entropy alloy. Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2022.03.607

    CAS  Google Scholar 

  42. Kim, H., Kobayashi, S., Abdurrahim, M.A., Zhang, M.J., Khusainova, A., Hillmyer, M.A., Abdala, A.A., MacOsko, C.W.: Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer (Guildf) 52, 1837–1846 (2011)

    Article  CAS  Google Scholar 

  43. Dewapriya, M.A.N., Rajapakse, R.K.N.D., Nigam, N.: Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene-polymer nanocomposite. Carbon N. Y. 93, 830–842 (2015)

    Google Scholar 

  44. Singh, S.K., Parashar, A.: Defect dynamics and uniaxial tensile deformation of equi and non-equi-atomic configuration of multi-elemental alloys. Mater. Chem. Phys. 266, 124549 (2021)

    Article  CAS  Google Scholar 

  45. Sharma, A.K., Sharma, S.S., Singh, S.K., Parashar, A.: Atomistic simulations to study the effect of helium nanobubble on the shear deformation of nickel crystal. J. Nucl. Mater. 557, 153245 (2021)

    Article  CAS  Google Scholar 

  46. Kumar Singh, S., Parashar, A.: Atomistic simulations to study crack tip behaviour in multi-elemental alloys. Eng. Fract. Mech. 243, 107536 (2021)

    Article  Google Scholar 

  47. Jeong, B.W., Lim, J.K., Sinnott, S.B.: Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension-torsion. Appl. Phys. Lett. 90, 1–4 (2007)

    Google Scholar 

  48. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    Article  CAS  Google Scholar 

  49. Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Google Scholar 

  50. Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., Junkermeier, C., Engel-Herbert, R., Janik, M.J., Aktulga, H.M., Verstraelen, T., Grama, A., van Duin, A.C.T.: The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016)

    Article  CAS  Google Scholar 

  51. Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001)

    Article  CAS  Google Scholar 

  52. Weismiller, M.R., van Duin, A.C.T., Lee, J., Yetter, R.A.: ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. J. Phys. Chem. A 114, 5485–5492 (2010)

    Article  CAS  Google Scholar 

  53. Lindsay, L., Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B Condens. Matter Mater. Phys. 81, 1–6 (2010)

    Article  CAS  Google Scholar 

  54. Kumar, R., Rajasekaran, G., Parashar, A.: Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study. Nanotechnology 27, 085706 (2016)

    Article  CAS  Google Scholar 

  55. Kumar, R., Parashar, A.: Dislocation assisted crack healing in h-BN nanosheets. Phys. Chem. Chem. Phys. 19, 21739–21747 (2017)

    Article  CAS  Google Scholar 

  56. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  CAS  Google Scholar 

  57. Chaurasia, A., Parashar, A.: Effect of BNNR on mechanical properties of polyethylene nanocomposites. Mater. Today Proc. 47, 2875–2877 (2021)

    Article  CAS  Google Scholar 

  58. Chaurasia, A., Singh, S.K., Parashar, A.: Atomistic scale insight to investigate the strain rate effect on mechanical response of boron nitride nanosheet reinforced nanocomposites. Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2022.04.337

  59. Chaurasia, A., Parashar, A., Mulik, R.S.: Enhancement in mechanical properties of polyethylene using h-BN nanofiller. In: Saran, V.H. (ed.) Advances in Systems Engineering, pp. 127–33. Springer, Singapore (2021)

    Google Scholar 

  60. Medhekar, N.V., Ramasubramaniam, A., Ruoff, R.S., Shenoy, V.B.: Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4, 2300–2306 (2010)

    Article  CAS  Google Scholar 

  61. Li, M., Zhou, H., Zhang, Y., Liao, Y., Zhou, H.: The effect of defects on the interfacial mechanical properties of graphene/epoxy composites. RSC Adv. 7, 46101–46108 (2017)

    Article  CAS  Google Scholar 

  62. Verma, A., Parashar, A., Packirisamy, M.: Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl. Surf. Sci. 470, 1085–1092 (2019)

    Article  CAS  Google Scholar 

  63. Bačová, P., Rissanou, A.N., Harmandaris, V.: Edge-functionalized graphene as a nanofiller: molecular dynamics simulation study. Macromolecules 48, 9024–9038 (2015)

    Article  CAS  Google Scholar 

  64. Nikkhah, S.J., Moghbeli, M.R., Hashemianzadeh, S.M.: Interfacial adhesion between functionalized polyethylene surface and graphene via molecular dynamic simulation. J. Mol. Model. 21, 121 (2015)

    Article  CAS  Google Scholar 

  65. Javan Nikkhah, S., Moghbeli, M.R., Hashemianzadeh, S.M.: Investigation of the interface between polyethylene and functionalized graphene: a computer simulation study. Curr. Appl. Phys. 15, 1188–1199 (2015)

    Article  Google Scholar 

  66. Awasthi, A.P., Lagoudas, D.C., Hammerand, D.C.: Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics. Model. Simul. Mater. Sci. Eng. 17, 015002 (2009)

    Article  CAS  Google Scholar 

  67. Rahman, R., Foster, J.T.: Deformation mechanism of graphene in amorphous polyethylene: a molecular dynamics based study. Comput. Mater. Sci. 87, 232–240 (2014)

    Article  CAS  Google Scholar 

  68. Liu, F., Hu, N., Ning, H., Liu, Y., Li, Y., Wu, L.: Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene. Comput. Mater. Sci. 108, 160–167 (2015)

    Article  CAS  Google Scholar 

  69. Kumar, R., Parashar, A.: Effect of geometrical defects and functionalization on the interfacial strength of h-BN/polyethylene based nanocomposite. Polymer (Guildf) 146, 82–90 (2018)

    Article  CAS  Google Scholar 

  70. Meng, J., Tajaddod, N., Cranford, S.W., Minus, M.L.: Polyethylene-assisted exfoliation of hexagonal boron nitride in composite fibers: a combined experimental and computational study. Macromol. Chem. Phys. 216, 847–855 (2015)

    Article  CAS  Google Scholar 

  71. Verma, A., Zhang, W., Van Duin, A.C.: ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets. Phys. Chem. Chem. Phys. 23(18), 10822–10834 (2021)

    Article  CAS  Google Scholar 

  72. Verma, A., Parashar, A., Packirisamy, M.: Role of chemical adatoms in fracture mechanics of graphene nanolayer. Mater. Today: Proc. 11, 920–924 (2019)

    CAS  Google Scholar 

  73. Singla, V., Verma, A., Parashar, A.: A molecular dynamics based study to estimate the point defects formation energies in graphene containing STW defects. Mater. Res. Express 6(1), 015606 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Chaurasia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaurasia, A., Singh, S.K., Parashar, A. (2022). Reinforcing Potential of 2D Nanofiller in Polyethylene: A Molecular Dynamics Approach. In: Verma, A., Mavinkere Rangappa, S., Ogata, S., Siengchin, S. (eds) Forcefields for Atomistic-Scale Simulations: Materials and Applications. Lecture Notes in Applied and Computational Mechanics, vol 99. Springer, Singapore. https://doi.org/10.1007/978-981-19-3092-8_11

Download citation

Publish with us

Policies and ethics

Navigation