Black Holes in Asymptotically Safe Gravity

  • Living reference work entry
  • First Online:
Handbook of Quantum Gravity
  • 33 Accesses

Abstract

In this chapter, we review the state-of-the-art of black holes in asymptotically safe gravity. After a brief recap of the asymptotic safety program, we shall summarize derivations and features of the main asymptotic safety-inspired models that have been constructed in the past by the so-called renormalization group improvement. Specifically, we will discuss static configurations, both in spherically and axially symmetric settings, the role played by the cosmological constant, and the impact of the collapse dynamics in determining black hole configurations realized in nature. In particular, we will review how quantum gravity could modify the Buchdahl limit and the corresponding conditions to form ultra-compact objects and Planckian black holes. We will then proceed by describing the most recent developments, particularly those aiming at making model building in asymptotic safety more rigorous and free from ambiguities. These include self-consistent and coordinate-independent versions of the renormalization group improvement and next steps to fill the gap between model building and renormalization group computations in asymptotic safety. Finally, we will focus on a selection of results that have been obtained from first-principle calculations or arguments, within and beyond asymptotic safety. Concretely, we will review the state-of-the-art in determining black hole entropy in asymptotic safety from a microstate counting and progress in deriving the quantum-corrected Newtonian potential. We will discuss how in quantum gravity theories linked to a gravitational path integral singularity resolution could be achieved by a dynamical suppression of singular configurations and how this is related to the form of the bare action. Finally, we will show that – independent of the specific ultraviolet completion of gravity – asymptotic modifications to Schwarzschild black holes are strongly constrained by the principle of least action at large-distance scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    FRG computations are typically performed in Euclidean. First steps toward Lorentzian calculations have been taken in [15,16,17,18,19,20,21,22,23,24], while Lorentzian computations based on the spectral FRG have been developed and applied in [25,26,27].

  2. 2.

    The value originally used in [49] was \(g_{\ast }^{-1}\xi ^{2}={118}/{(15\pi )}\) and was based on the corrections to the Newtonian potential computed in [60].

  3. 3.

    Such an identification is however a stretch, as we will discuss in section “Toward a Dressed Newtonian Potential Within Asymptotic Safety”.

  4. 4.

    In a unimodular approach to quantum gravity, the cosmological constant emerges as an integration constant instead of a coupling, and thus it does not reintroduce the Schwarzschild singularity [77].

  5. 5.

    The dent introduced in [91,92,93,94,95] and the one discussed in [85, 89, 90] are however structurally different, since in the case of [85, 89, 90] the scale identification introduces an angular dependence in all metric components that breaks a mathematical property known as “circularity.” The non-circularity yields a dent whose boundary has a concave piece, as opposed to the one in [91,92,93,94,95] which is fully convex.

  6. 6.

    It is worth mentioning that the one-loop results in [61] have not been reproduced yet via full-fledged FRG computations. See however [150] for first steps in this direction.

References

  1. R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety, in 100 Years of General Relativity, vol. 3 (World Scientific, Singapore, 2017)

    Book  Google Scholar 

  2. M. Reuter, F. Saueressig, Quantum Gravity and the Functional Renormalization Group (Cambridge University Press, Cambridge, University Printing House Shaftesbury Road, United Kingdom, 2019)

    Google Scholar 

  3. A. Nink, M. Reuter, On the physical mechanism underlying asymptotic safety. J. High Energy Phys. 1, 62 (2013)

    Article  ADS  Google Scholar 

  4. C. Contreras, B. Koch, P. Rioseco, Black hole solution for scale-dependent gravitational couplings and the corresponding coupling flow. Class. Quant. Grav. 30, 175009 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. B. Koch, P. Rioseco, Black hole solutions for scale dependent couplings: the de Sitter and the Reissner-Nordstöm case. Class. Quant. Grav. 33, 035002 (2016)

    Article  ADS  Google Scholar 

  6. E. Contreras, A. Rincón, B. Koch, P. Bargueño, A regular scale-dependent black hole solution. Int. J. Mod. Phys. D 27(03), 1850032 (2017)

    Google Scholar 

  7. E. Contreras, A. Rincón, G. Panotopoulos, P. Bargueño, B. Koch, Black hole shadow of a rotating scale–dependent black hole. Phys. Rev. D 101(6), 064053 (2020)

    Google Scholar 

  8. B. Koch, F. Saueressig, Black holes within asymptotic safety. Int. J. Mod. Phys. A29(8), 1430011 (2014)

    Google Scholar 

  9. F. Saueressig, N. Alkofer, G. D’Odorico, F. Vidotto, Black holes in asymptotically safe gravity. PoS FFP14, 174 (2016)

    Google Scholar 

  10. A. Eichhorn, A. Held, Black Holes in Asymptotically Safe Gravity and Beyond, vol. 12 (2022)

    Google Scholar 

  11. N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J.M. Pawlowski, M. Tissier, N. Wschebor, The nonperturbative functional renormalization group and its applications. Phys. Rept. 910, 1–114 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Laiho, S. Bassler, D. Coumbe, D. Du, J.T. Neelakanta, Lattice quantum gravity and asymptotic safety (2016). Ar**v e-prints

    Google Scholar 

  13. R. Loll, Quantum gravity from causal dynamical triangulations: a review. Class. Quant. Grav. 37(1), 013002 (2020)

    Google Scholar 

  14. K.G. Wilson, J.B. Kogut, The renormalization group and the epsilon expansion. Phys. Rept. 12, 75–199 (1974)

    Article  ADS  Google Scholar 

  15. E. Manrique, S. Rechenberger, F. Saueressig, Asymptotically safe Lorentzian gravity. Phys. Rev. Lett. 106, 251302 (2011)

    Article  ADS  Google Scholar 

  16. S. Rechenberger, F. Saueressig, A functional renormalization group equation for foliated spacetimes. J. High Energy Phys. 3, 10 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Biemans, A. Platania, F. Saueressig, Quantum gravity on foliated spacetimes: asymptotically safe and sound. Phys. Rev. D95(8), 086013 (2017)

    Google Scholar 

  18. J. Biemans, A. Platania, F. Saueressig, Renormalization group fixed points of foliated gravity-matter systems. JHEP 05, 093 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. W.B. Houthoff, A. Kurov, F. Saueressig, Impact of topology in foliated quantum Einstein gravity. Eur. Phys. J. C77, 491 (2017)

    Article  ADS  Google Scholar 

  20. A. Platania, F. Saueressig, Functional renormalization group flows on Friedman-Lemaitre-Robertson-Walker backgrounds. Found. Phys. 48(10), 1291–1304 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Baldazzi, R. Percacci, V. Skrinjar, Quantum fields without Wick rotation. Symmetry 11(3), 373 (2019)

    Google Scholar 

  22. B. Knorr, Lorentz symmetry is relevant. Phys. Lett. B792, 142–148 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Eichhorn, A. Platania, M. Schiffer, Lorentz invariance violations in the interplay of quantum gravity with matter. Phys. Rev. D 102(2), 026007 (2020)

    Google Scholar 

  24. A. Bonanno, T. Denz, J.M. Pawlowski, M. Reichert, Reconstructing the graviton. Sci. Post Phys. 12(1), 001 (2022)

    Google Scholar 

  25. J. Fehre, D.F. Litim, J.M. Pawlowski, M. Reichert, Lorentzian Quantum Gravity and the Graviton Spectral Function, vol. 11 (2021)

    Google Scholar 

  26. J. Braun et al., Renormalised Spectral Flows, vol. 6 (2022)

    Google Scholar 

  27. Y. Kluth, D. Litim, M. Reichert, Spectral Functions of Gauge Theories with Banks-Zaks Fixed Points, vol. 7 (2022)

    Google Scholar 

  28. C. Wetterich, Exact evolution equation for the effective potential. Phys. Lett. B 301, 90–94 (1993)

    Article  ADS  Google Scholar 

  29. T.R. Morris, The exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 9, 2411–2449 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Denz, J.M. Pawlowski, M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity. Eur. Phys. J. C78(4), 336 (2018)

    Google Scholar 

  31. B. Knorr, C. Ripken, F. Saueressig, Form factors in asymptotic safety: conceptual ideas and computational toolbox. Class. Quant. Grav. 36(23), 234001 (2019)

    Google Scholar 

  32. N. Christiansen, B. Knorr, J.M. Pawlowski, A. Rodigast, Global flows in quantum gravity. Phys. Rev. D93(4), 044036 (2016)

    Google Scholar 

  33. B. Knorr, F. Saueressig, Towards reconstructing the quantum effective action of gravity. Phys. Rev. Lett. 121(16), 161304 (2018)

    Google Scholar 

  34. L. Bosma, B. Knorr, F. Saueressig, Resolving spacetime singularities within asymptotic safety. Phys. Rev. Lett. 123(10), 101301 (2019)

    Google Scholar 

  35. B. Knorr, M. Schiffer, Non-perturbative propagators in quantum gravity. Universe 7(7), 216 (2021)

    Google Scholar 

  36. S.R. Coleman, E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888–1910 (1973)

    Article  ADS  Google Scholar 

  37. A.B. Migdal, Vacuum polarization in strong non-homogeneous fields. Nucl. Phys. B 52, 483–505 (1973)

    Article  ADS  Google Scholar 

  38. S.G. Matinyan, G.K. Savvidy, Vacuum polarization induced by the intense gauge field. Nucl. Phys. B 134, 539–545 (1978)

    Article  ADS  Google Scholar 

  39. S.L. Adler, Short-distance perturbation theory for the leading logarithm models. Nucl. Phys. B 217, 381–394 (1983)

    Article  ADS  Google Scholar 

  40. W. Dittrich, M. Reuter, Effective Lagrangians in quantum electrodynamics. Lect. Notes Phys. 220, 1–244 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Reuter, H. Weyer, Renormalization group improved gravitational actions: a Brans-Dicke approach. Phys. Rev. D69, 104022 (2004)

    ADS  Google Scholar 

  42. J.N. Borissova, A. Platania, Formation and Evaporation of Quantum Black Holes from the Decoupling Mechanism in Quantum Gravity, vol. 10 (2022)

    Google Scholar 

  43. A. Babic, B. Guberina, R. Horvat, H. Stefancic, Renormalization-group running cosmologies. A Scale-setting procedure. Phys. Rev. D71, 124041 (2005)

    Google Scholar 

  44. S. Domazet, H. Stefancic, Renormalization group scale-setting in astrophysical systems. Phys. Lett. B703, 1–6 (2011)

    Article  ADS  Google Scholar 

  45. B. Koch, I. Ramirez, Exact renormalization group with optimal scale and its application to cosmology. Class. Quant. Grav. 28, 055008 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Domazet, H. Stefancic, Renormalization group scale-setting from the action – a road to modified gravity theories. Class. Quant. Grav. 29, 235005 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  47. B. Koch, P. Rioseco, C. Contreras, Scale setting for self-consistent backgrounds. Phys. Rev. D91(2), 025009 (2015)

    Google Scholar 

  48. A. Bonanno, M. Reuter, Quantum gravity effects near the null black hole singularity. Phys. Rev. D60, 084011 (1999)

    ADS  MathSciNet  Google Scholar 

  49. A. Bonanno, M. Reuter, Renormalization group improved black hole space-times. Phys. Rev. D62, 043008 (2000)

    ADS  Google Scholar 

  50. A. Bonanno, M. Reuter, Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D73, 083005 (2006)

    ADS  MathSciNet  Google Scholar 

  51. T. Burschil, B. Koch, Renormalization group improved black hole space-time in large extra dimensions. Zh. Eksp. Teor. Fiz. 92, 219–225 (2010); [JETP Lett. 92, 193 (2010)]

    Google Scholar 

  52. K. Falls, D.F. Litim, A. Raghuraman, Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A27, 1250019 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  53. H. Emoto, Asymptotic safety of quantum gravity and improved spacetime of black hole singularity by cutoff identification (2005)

    Google Scholar 

  54. H. Emoto, Quantum Gravity Through Non-Perturbative Renormalization Group and Improved Black Hole, in Proceedings, 28th International Workshop on Fundamental Problems of High Energy Physics and Field Theory: New Physics at Colliders and in Cosmic Rays Protvino, Russia, 22–24 June, 2005 (2006), pp. 116–129

    Google Scholar 

  55. K. Falls, D.F. Litim, Black hole thermodynamics under the microscope. Phys. Rev. D89, 084002 (2014)

    ADS  Google Scholar 

  56. B. Koch, C. Contreras, P. Rioseco, F. Saueressig, Black holes and running couplings: a comparison of two complementary approaches. Springer Proc. Phys. 170, 263–269 (2016)

    Article  Google Scholar 

  57. C. González, B. Koch, Improved Reissner–Nordström – (A)dS black hole in asymptotic safety. Int. J. Mod. Phys. A 31(26), 1650141 (2016)

    Google Scholar 

  58. Y. Zhang, M. Zhou, C. Bambi, Iron line spectroscopy of black holes in asymptotically safe gravity. Eur. Phys. J. C78(5), 376 (2018)

    Google Scholar 

  59. C.-M. Chen, Y. Chen, A. Ishibashi, N. Ohta, D. Yamaguchi, Running Newton coupling, scale identification, and black hole thermodynamics. Phys. Rev. D 105(10), 106026 (2022)

    Google Scholar 

  60. H.W. Hamber, S. Liu, On the quantum corrections to the Newtonian potential. Phys. Lett. B 357, 51–56 (1995)

    Article  ADS  Google Scholar 

  61. J.F. Donoghue, Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 72, 2996–2999 (1994)

    Article  ADS  Google Scholar 

  62. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D 67, 084033 (2003); [Erratum: Phys. Rev. D 71, 069903 (2005)]

    Google Scholar 

  63. I.B. Khriplovich, G.G. Kirilin, Quantum long range interactions in general relativity. J. Exp. Theor. Phys. 98, 1063–1072 (2004)

    Article  ADS  Google Scholar 

  64. E. Poisson, W. Israel, Inner-horizon instability and mass inflation in black holes. Phys. Rev. Lett. 63, 1663–1666 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  65. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, On the viability of regular black holes. JHEP 07, 023 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  66. A. Bonanno, A.-P. Khosravi, F. Saueressig, Regular black holes with stable cores. Phys. Rev. D 103(12), 124027 (2021)

    Google Scholar 

  67. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, Inner horizon instability and the unstable cores of regular black holes. JHEP 05, 132 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  68. C. Barceló, V. Boyanov, R. Carballo-Rubio, L.J. Garay, Classical Mass Inflation vs Semiclassical Inner Horizon Inflation, vol. 3 (2022)

    Google Scholar 

  69. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, Regular black holes without mass inflation instability. JHEP 09, 118 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  70. A. Bonanno, A.-P. Khosravi, F. Saueressig, Regular Evaporating Black Holes with Stable Cores, vol. 9 (2022)

    Google Scholar 

  71. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, Comment on Stability Properties of Regular Black Holes, vol. 12 (2022)

    Google Scholar 

  72. A. Rincón, G. Panotopoulos, Quasinormal modes of an improved Schwarzschild black hole. Phys. Dark Univ. 30, 100639 (2020)

    Article  Google Scholar 

  73. L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  74. B. Koch, F. Saueressig, Structural aspects of asymptotically safe black holes. Class. Quant. Grav. 31, 015006 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  75. A. Adeifeoba, A. Eichhorn, A. Platania, Towards conditions for black-hole singularity-resolution in asymptotically safe quantum gravity. Class. Quant. Grav. 35(22), 225007 (2018)

    Google Scholar 

  76. Y.-F. Cai, D.A. Easson, Black holes in an asymptotically safe gravity theory with higher derivatives. JCAP 1009, 002 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  77. R. Torres, Nonsingular black holes, the cosmological constant, and asymptotic safety. Phys. Rev. D95(12), 124004 (2017)

    Google Scholar 

  78. N. Alkofer, F. Saueressig, Asymptotically safe f(R)-gravity coupled to matter I: the polynomial case. Ann. Phys. 396, 173–201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  79. A. Bonanno, A. Platania, F. Saueressig, Cosmological bounds on the field content of asymptotically safe gravity – matter models. Phys. Lett. B 784, 229–236 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  80. H. Lu, A. Perkins, C.N. Pope, K.S. Stelle, Black holes in higher-derivative gravity. Phys. Rev. Lett. 114(17), 171601 (2015)

    Google Scholar 

  81. M. Reuter, H. Weyer, Running Newton constant, improved gravitational actions, and galaxy rotation curves. Phys. Rev. D70, 124028 (2004)

    ADS  Google Scholar 

  82. M. Reuter, H. Weyer, Quantum gravity at astrophysical distances? JCAP 12, 001 (2004)

    ADS  Google Scholar 

  83. M. Reuter, E. Tuiran, Quantum Gravity Effects in Rotating Black Holes, in Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories. Proceedings, 11th Marcel Grossmann Meeting, MG11, Berlin, Germany, 23–29 July, 2006. Pt. A–C (2006), pp. 2608–2610

    Google Scholar 

  84. M. Reuter, E. Tuiran, Quantum gravity effects in the kerr spacetime. Phys. Rev. D83, 044041 (2011)

    ADS  Google Scholar 

  85. A. Held, R. Gold, A. Eichhorn, “Asymptotic safety casts its shadow. JCAP 1906(06), 029 (2019)

    Google Scholar 

  86. J.M. Pawlowski, D. Stock, Quantum-improved Schwarzschild-(A)dS and Kerr-(A)dS spacetimes. Phys. Rev. D98(10), 106008 (2018)

    Google Scholar 

  87. A. Ishibashi, N. Ohta, D. Yamaguchi, Quantum improved charged black holes. Phys. Rev. D 104(6), 066016 (2021)

    Google Scholar 

  88. S.A. Hayward, Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  89. A. Eichhorn, A. Held, Image features of spinning regular black holes based on a locality principle. Eur. Phys. J. C 81(10), 933 (2021)

    Google Scholar 

  90. A. Eichhorn, A. Held, From a locality-principle for new physics to image features of regular spinning black holes with disks. JCAP 05, 073 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  91. Z. Li, C. Bambi, Measuring the Kerr spin parameter of regular black holes from their shadow. JCAP 01, 041 (2014)

    Article  ADS  Google Scholar 

  92. C. Bambi, Testing black hole candidates with electromagnetic radiation. Rev. Mod. Phys. 89(2), 025001 (2017)

    Google Scholar 

  93. A. Abdujabbarov, M. Amir, B. Ahmedov, S.G. Ghosh, Shadow of rotating regular black holes. Phys. Rev. D 93(10), 104004 (2016)

    Google Scholar 

  94. J. Schee, Z. Stuchlík, B. Ahmedov, A. Abdujabbarov, B. Toshmatov, Gravitational lensing by regular black holes surrounded by plasma. Int. J. Mod. Phys. D 26(5), 1741011 (2017)

    Google Scholar 

  95. N. Tsukamoto, Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: the Kerr-Newman and rotating regular black holes. Phys. Rev. D 97(6), 064021 (2018)

    Google Scholar 

  96. S. Vagnozzi et al., Horizon-Scale Tests of Gravity Theories and Fundamental Physics from the Event Horizon Telescope Image of Sagittarius A, vol. 5 (2022)

    Google Scholar 

  97. R. Casadio, S.D.H. Hsu, B. Mirza, Asymptotic safety, singularities, and gravitational collapse. Phys. Lett. B695, 317–319 (2011)

    Article  ADS  Google Scholar 

  98. F. Fayos, R. Torres, A quantum improvement to the gravitational collapse of radiating stars. Class. Quant. Grav. 28, 105004 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  99. R. Torres, Singularity-free gravitational collapse and asymptotic safety. Phys. Lett. B 733, 21–24 (2014)

    Article  ADS  Google Scholar 

  100. R. Torres, F. Fayos, Singularity free gravitational collapse in an effective dynamical quantum spacetime. Phys. Lett. B 733, 169–175 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  101. R. Torres, F. Fayos, On the quantum corrected gravitational collapse. Phys. Lett. B 747, 245–250 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  102. A. Bonanno, B. Koch, A. Platania, Cosmic censorship in quantum Einstein gravity. Class. Quant. Grav. 34(9), 095012 (2017)

    Google Scholar 

  103. A. Bonanno, B. Koch, A. Platania, Asymptotically safe gravitational collapse: Kuroda-Papapetrou RG-improved model. PoS corfu2016, 058 (2017)

    Google Scholar 

  104. A. Bonanno, B. Koch, A. Platania, Gravitational collapse in quantum Einstein gravity. Found. Phys. 48(10), 1393–1406 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  105. A. Bonanno, R. Casadio, A. Platania, Gravitational antiscreening in stellar interiors. JCAP 2001(01), 022 (2020)

    Google Scholar 

  106. J.R. Oppenheimer, H. Snyder, On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  107. P.C. Vaidya, The Gravitational Field of a Radiating Star,’ in Proceedings of the Indian Academy of Sciences-Section A, vol. 33 (Springer, 1951), pp. 264–276

    Google Scholar 

  108. H. Bondi, The contraction of gravitating spheres. Proc. Roy. Soc. Lond. A 281, 39–48 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  109. B. Waugh, K. Lake, Backscattered radiation in the vaidya metric near zero mass. Phys. Lett. A 116(4), 154–156 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  110. S. Weinberg, Asymptotically safe inflation. Phys. Rev. D81, 083535 (2010)

    ADS  Google Scholar 

  111. S.W. Hawking, R. Penrose, The Singularities of Gravitational Collapse and Cosmology, in Proceedings of the Royal Society of London Series A, vol. 314 (1970), pp. 529–548

    Google Scholar 

  112. R. Penrose, Rivista del Nuovo Cimento 1, 252 (1969)

    ADS  Google Scholar 

  113. Y. Kuroda, Naked singularities in the Vaidya spacetime. Prog. Theor. Phys. 72, 63–72 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  114. A. Papapetrou, Formation of a Singularity and Causality, in A Random Walk in Relativity and Cosmology, eds. by M. Dadhich, J. Krishna Rao, J.V. Narlikar, C.V. Vishveshwara (1985), pp. 184–191

    Google Scholar 

  115. A. Wang, Y. Wu, Generalized Vaidya solutions. Gen. Rel. Grav. 31, 107 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  116. F.J. Tipler, On the nature of singularities in general relativity. Phys. Rev. D 15, 942–945 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  117. R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939)

    Article  ADS  Google Scholar 

  118. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55, 374–381 (1939)

    Article  ADS  Google Scholar 

  119. H.A. Buchdahl, General relativistic fluid spheres. Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  120. M.A. Markov, V.F. Mukhanov, De Sitter-like initial state of the universe as a result of asymptotical disappearance of gravitational interactions of matter. Nuovo Cim. B86, 97–102 (1985); [544 (1985)]

    Google Scholar 

  121. J. Arrechea, C. Barceló, R. Carballo-Rubio, L.J. Garay, Semiclassical relativistic stars. Sci. Rep. 12(1), 15958 (2022)

    Google Scholar 

  122. C. Rovelli, F. Vidotto, Planck stars. Int. J. Mod. Phys. D23(12), 1442026 (2014)

    Google Scholar 

  123. A. Platania, From renormalization group flows to cosmology. Front. Phys. 8, 188 (2020)

    Article  Google Scholar 

  124. A. Platania, The inflationary mechanism in asymptotically safe gravity. Universe 5(8), 189 (2019)

    Google Scholar 

  125. A. Bonanno, An effective action for asymptotically safe gravity. Phys. Rev. D85, 081503 (2012)

    ADS  Google Scholar 

  126. M. Hindmarsh, I.D. Saltas, f(R) Gravity from the renormalisation group. Phys. Rev. D86, 064029 (2012)

    Google Scholar 

  127. A. Bonanno, A. Platania, Asymptotically safe inflation from quadratic gravity. Phys. Lett. B750, 638–642 (2015)

    Article  ADS  Google Scholar 

  128. A. Bonanno, A. Platania, Asymptotically Safe R+R2 gravity. PoS corfu2015, 159 (2016)

    Google Scholar 

  129. A. Bonanno, M. Reuter, Cosmology with self-adjusting vacuum energy density from a renormalization group fixed point. Phys. Lett. B527, 9–17 (2002)

    Article  ADS  Google Scholar 

  130. A. Bonanno, M. Reuter, Cosmology of the Planck era from a renormalization group for quantum gravity. Phys. Rev. D65, 043508 (2002)

    ADS  MathSciNet  Google Scholar 

  131. A. Bonanno, M. Reuter, Cosmological perturbations in renormalization group derived cosmologies. Int. J. Mod. Phys. D13, 107–122 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  132. A. Bonanno, M. Reuter, Entropy signature of the running cosmological constant. JCAP 0708, 024 (2007)

    Article  ADS  Google Scholar 

  133. A. Platania, Dynamical renormalization of black-hole spacetimes. Eur. Phys. J. C79(6), 470 (2019)

    Google Scholar 

  134. I. Dymnikova, Vacuum nonsingular black hole. Gen. Rel. Grav. 24, 235–242 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  135. A. Held, Invariant Renormalization-Group Improvement, vol. 5 (2021)

    Google Scholar 

  136. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2003)

    Google Scholar 

  137. J. Carminati, R.G. McLenaghan, Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. J. Math. Phys. 32, 3135–3140 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  138. E. Zakhary, C.B.G. McIntosh, A complete set of Riemann invariants. Gener. Relativ. Grav. 29, 539–581 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  139. J. Carminati, E. Zakhary, Algebraic Completeness for the Invariants of the Riemann Tensor, in Proceedings of the Ninth Marcel Grossmann Meeting (World Scientific, 2002), pp. 831–834. https://doi.org/10.1142/9789812777386_0081

  140. A.B. Platania, Asymptotically Safe Gravity: from spacetime foliation to cosmology. Springer Theses (Springer International Publishing, Cham, 2018)

    Book  Google Scholar 

  141. J.R. Ray, Lagrangian density for perfect fluids in general relativity. J. Math. Phys. 13(10), 1451–1453 (1972)

    Article  ADS  Google Scholar 

  142. Y. Zhang, Y. Zhu, L. Modesto, C. Bambi, Can static regular black holes form from gravitational collapse?. Eur. Phys. J. C 75(2), 96 (2015)

    Google Scholar 

  143. A. Bonanno, M. Reuter, Modulated ground state of gravity theories with stabilized conformal factor. Phys. Rev. D87(8), 084019 (2013)

    Google Scholar 

  144. A. Bonanno, On the structure of the vacuum in quantum gravity: a view from the asymptotic safety scenario. Universe 5(8), 182 (2019)

    Google Scholar 

  145. A. Bonanno, S. Silveravalle, Characterizing black hole metrics in quadratic gravity. Phys. Rev. D99(10), 101501 (2019)

    Google Scholar 

  146. B. Knorr, A. Platania, Sifting quantum black holes through the principle of least action. Phys. Rev. D 106(2), L021901 (2022)

    Google Scholar 

  147. D. Becker, M. Reuter, Running boundary actions, asymptotic safety, and black hole thermodynamics. JHEP 07, 172 (2012)

    Article  ADS  Google Scholar 

  148. D. Becker, M. Reuter, Asymptotic Safety and Black Hole Thermodynamics, in 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (2015), pp. 2230–2232

    Google Scholar 

  149. C. Pagani, M. Reuter, Finite entanglement entropy in asymptotically safe quantum gravity. JHEP 07, 039 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  150. A. Satz, A. Codello, F.D. Mazzitelli, Low energy quantum gravity from the effective average action. Phys. Rev. D 82, 084011 (2010)

    Article  ADS  Google Scholar 

  151. R. Ferrero, C. Ripken, De Sitter Scattering Amplitudes in the Born Approximation, vol. 12 (2021)

    Google Scholar 

  152. I. Basile, A. Platania, Asymptotic safety: swampland or wonderland?. Universe 7(10), 389 (2021)

    Google Scholar 

  153. J.N. Borissova, A. Eichhorn, Towards black-hole singularity-resolution in the Lorentzian gravitational path integral. Universe 7(3), 48 (2021)

    Google Scholar 

  154. J.-L. Lehners, K.S. Stelle, A safe beginning for the universe? Phys. Rev. D100(8), 083540 (2019)

    Google Scholar 

  155. J. Bardeen, in Proceedings of GR5, Tiflis, U.S.S.R (1968)

    Google Scholar 

  156. V.N. Lukash, V.N. Strokov, Space-times with integrable singularity. Int. J. Mod. Phys. A28, 1350007 (2013)

    Article  ADS  Google Scholar 

  157. J. Maldacena, D. Stanford, Z. Yang, Diving into traversable wormholes. Fortsch. Phys. 65(5), 1700034 (2017)

    Google Scholar 

  158. D. Marolf, J.E. Santos, AdS Euclidean wormholes. Class. Quant. Grav. 38(22), 224002 (2021)

    Google Scholar 

  159. B. Guo, M.R.R. Hughes, S.D. Mathur, M. Mehta, Contrasting the fuzzball and wormhole paradigms for black holes. Turk. J. Phys. 45(6), 281–365 (2021)

    Article  Google Scholar 

  160. P.O. Mazur, E. Mottola, Gravitational Condensate Stars: An Alternative to Black Holes, vol. 9 (2001)

    Google Scholar 

  161. S.D. Mathur, The Fuzzball proposal for black holes: an elementary review. Fortsch. Phys. 53, 793–827 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  162. J.P.S. Lemos, O.B. Zaslavskii, Quasi black holes: definition and general properties. Phys. Rev. D 76, 084030 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  163. C. Barcelo, S. Liberati, S. Sonego, M. Visser, Fate of gravitational collapse in semiclassical gravity. Phys. Rev. D 77, 044032 (2008)

    Article  ADS  Google Scholar 

  164. F. Chen, B. Michel, J. Polchinski, A. Puhm, Journey to the center of the fuzzball. JHEP 02, 081 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  165. I. Bena, S. Giusto, E.J. Martinec, R. Russo, M. Shigemori, D. Turton, N.P. Warner, Smooth horizonless geometries deep inside the black-hole regime. Phys. Rev. Lett. 117(20), 201601 (2016)

    Google Scholar 

  166. A. Simpson, M. Visser, Black-bounce to traversable wormhole. JCAP 02, 042 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  167. A. Bonanno, F. Saueressig, Asymptotically safe cosmology – a status report. Compt. Rend. Phys. 18, 254–264 (2017)

    Article  ADS  Google Scholar 

  168. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  169. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks J. Borissova, A. Held, and B. Knorr for comments on various sections of the book chapter, A. Held for many fruitful discussions on the derivations in [135], and B. Knorr for providing the numerical data of [34] to generate the plots in Fig. 13. A.P. acknowledges support by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Colleges and Universities. A.P. also acknowledges Nordita for support within the “Nordita Distinguished Visitors” program and for hospitality during the last stages of development of this work. Nordita is supported in part by NordForsk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Platania .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Platania, A. (2023). Black Holes in Asymptotically Safe Gravity. In: Bambi, C., Modesto, L., Shapiro, I. (eds) Handbook of Quantum Gravity. Springer, Singapore. https://doi.org/10.1007/978-981-19-3079-9_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3079-9_24-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3079-9

  • Online ISBN: 978-981-19-3079-9

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation