Kernel Learning Estimation: A Model-Free Approach to Tracking Randomly Moving Object

  • Chapter
  • First Online:
Emerging IT/ICT and AI Technologies Affecting Society

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 478))

  • 593 Accesses

Abstract

Kernel learning estimation (KLE) is a kernel-based method, where the original spatial data is mapped into a high-dimensional Hilbert space by a nonlinear map**, hiding the nonlinear map** in a linear learning framework. The kernel function of the method can be used to replace the complex inner product operation in the high-dimensional space and avoid the Curse of Dimensionality caused by high-dimensional calculation effectively. The kernel-based method has advantages on learnability, computational complexity, precise linearization and generalization performances, providing a promising way to solve the problem of nonlinear target tracking. In traditional tracking methods, nonlinear tracking models are usually built as a priori to predict the current state of target motion, emphasizing on tracking accuracy and real-time performance. However, kernel-based method provides a general way of linearization processing, which can be independent of specific models to achieve highly efficient data-driven computation. Introducing the kernel learning mechanism into target tracking problem is expected to improve the environmental adaptability. In this paper, a review on kernel learning method with application to randomly moving target tracking is presented, including kernel-based algorithms for target detection, kernel-based algorithms for generative tracking and for discriminant tracking, and multi-kernel learning methods with multiple kernel functions. Further research is prospected in optimization of kernel function, long-term robust tracking, feature extraction, target occlusion and other potential aspects on moving target tracking using kernel learning theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Juang CF, Chiu SH, Chang SW (2007) A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems. IEEE Trans Fuzzy Syst 15(5):998–1008

    Article  Google Scholar 

  2. Chen GC, Juang CF (2013) Object detection using color entropies and a fuzzy classifier. IEEE Comput Intell Mag 8(1):33–45

    Article  Google Scholar 

  3. Smeulders AWM, Chu DM, Cucchiara R et al (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468

    Article  Google Scholar 

  4. Wang D (2017) Design of intelligent video surveillance system based on motion detection. North University of China, Taiyuan

    Google Scholar 

  5. Gündüz G, Acarman AT (2018) A lightweight online multiple object vehicle tracking method. In: Proceedings of IEEE intelligent vehicles symposium, Changshu, China, pp 427–432

    Google Scholar 

  6. Lu Y, Dai H, Hu Y et al (2020) Research on collaborative target tracking algorithm of UAV based on machine vision. Electronic Devices 43(5):1096–1099

    Google Scholar 

  7. Gao T (2012) Medical image analysis based on multi-target tracking. **dian University

    Google Scholar 

  8. Aronszajn D (1950) Theory of reproducing kernel. Trans Am Math Soc 68:337–404

    Article  MathSciNet  Google Scholar 

  9. Scholkopf B, Smola AJ, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  10. Mika S, Ratsch G, Weston J et al (1999) Fisher discriminant analysis with Kenels. In: Proceedings of IEEE signal proceeding society workshop, pp 41–48

    Google Scholar 

  11. Bach FR, Jordan MI (2003) Kernel independent component analysis. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, HK, China

    Google Scholar 

  12. Fukunaga K, Hostetler L (1975) The estimation of gradient of a density function with applications in pattern recognition. IEEE Trans Inf Theory 21(1):32–40

    Article  MathSciNet  Google Scholar 

  13. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intelli 17(8):790–799

    Article  Google Scholar 

  14. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 142–149

    Google Scholar 

  15. Comaniciu D, Meer P (1999) Mean shift analysis and application. In: Proceedings of the IEEE international conference on computer vision, pp 1197–1203

    Google Scholar 

  16. Comaniciu D, Meer P (2002) Mean shift: a robust application toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  17. Comaniciu D, Meer P (1997) Robust analysis of feature spaces: color image segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 750–755

    Google Scholar 

  18. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vision 30(2):194–203

    Google Scholar 

  19. Collins RT (2003) Mean shift blob tracking through scale space. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 234–240

    Google Scholar 

  20. Birchfield ST, Rangarajan S (2005) Spatiograms versus histograms for region-based tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1158–1163

    Google Scholar 

  21. Welch G, Bishop G (2006) An introduction to the Kalman filter,UNC-Chapel Hill, NC

    Google Scholar 

  22. Park M, Liu Y, Collins R (2008) Efficient mean shift belief propagation for vision tracking. In: Proceedings of the IEEE conference computer vision and pattern recognition

    Google Scholar 

  23. Bolme DS, Beveridge JR, Draper BA et al (2010) Visual object tracking using adaptive correlation filters. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 2544–2550

    Google Scholar 

  24. Henriques JF, Caseiro R, Martins P et al (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of European conference on computer vision, pp 702–715

    Google Scholar 

  25. Danelljan M, Shahbaz KF, Felsberg M et al (2014) Adaptive color attributes for real-time visual tracking. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1090–1097

    Google Scholar 

  26. Henriques JF, Caseiro R, Martins P et al (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  27. He X (2005) Multivariate linear model and ridge regression analysis. Huazhong University of Science and Technology, Wuhan

    Google Scholar 

  28. Liang CW, Juang CF (2015) Moving object classification using local shape and HOG features in wavelet-transformed space with hierarchical SVM classifiers. Appl Soft Comput 28:483–497

    Article  Google Scholar 

  29. Liang CW, Juang CF (2015) Moving object classification using a combination of static appearance features and spatial and temporal entropies of optical flows. IEEE Trans Intell Transp Syst 16(6):3453–3464

    Article  Google Scholar 

  30. Arulampalam MS, Maskell S, Gordon NA (2002) Tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  31. Juang CF, Chang CW, Hung TH (2021) Hand palm tracking in monocular images by fuzzy rule-based fusion of explainable fuzzy features with robot imitation application. IEEE Trans Fuzzy Syst 29(12):3594–3606

    Article  Google Scholar 

  32. Kalal Z, Mikolajczyk K, Matas J (2011) Tracking-learning-detection Kernel. IEEE Trans Pattern Anal Mach Intell 34(7):409–422

    Google Scholar 

  33. Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: Proceedings of European conference on computer vision, pp 864–877

    Google Scholar 

  34. **a X, Zhang X, Li J (2017) Kernel correlation filter target tracking method combined with scale prediction. Electronic Design Eng 25(2):130–136

    Google Scholar 

  35. Hannuna S, Camplani M, Hall J et al (2019) DSKCF: a real-time tracker for RGB-D data. J Real-Time Image Proc 16(5):1439–1458

    Article  Google Scholar 

  36. Danelljan M, Hager G, Khan FS et al (2015) Learning spatially regularized correlation filters for visual tracking. In: Proceedings of IEEE international conference on computer vision, pp 4310–4318

    Google Scholar 

  37. Gonen M, Alpaydin E (2011) Multiple Kernel learning algorithms. J Mach Learn Res 12:2211–2268

    MathSciNet  MATH  Google Scholar 

  38. Lanckriet G, Cristianini N, Bartlett P et al (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5(1):27–72

    MathSciNet  MATH  Google Scholar 

  39. Lee WJ, Verzakov S, Duin RP (2007) Kernel combination versus classifier combination. In: Proceedings of the international workshop on multiple classifier systems. Czech Republic, Prague, pp 22−31

    Google Scholar 

  40. Mak B, Kwok JT, Ho S (2004) A study of various composite kernels for kernel eigenvoice speaker adaptation. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing. Montreal, Canada, pp 325−328

    Google Scholar 

  41. Fu SY, Yang GS, Hou ZG, Liang Z, Tan M (2008) Multiple kernel learning from sets of partially matching image features. In: Proceedings of the international conference on pattern recognition

    Google Scholar 

  42. Zheng S, Liu J, Tian JW (2005) An efficient star acquisition method based on SVM with mixtures of kernels. Pattern Recogn Lett 26(2):147–165

    Article  Google Scholar 

  43. Fung G, Dundar M, Bi J, Rao B (2004) A fast iterative algorithm for fisher discriminant using heterogeneous kernels. In: Proceedings of the international conference on machine learning. Banff, Canada, pp 40−47

    Google Scholar 

  44. Damoulas T, Girolami MA (2009) Combining feature spaces for classification. Pattern Recogn 42(11):2671–2683

    Article  Google Scholar 

  45. Damoulas T, Girolami MA (2009) Pattern recognition with a Bayesian kernel combination machine. Pattern Recogn Lett 30(1):46–54

    Article  Google Scholar 

  46. Gustavo V, Luis C, Jordi M et al (2006) Composite kernels for hyperspectral image classification. IEEE Trans Geosci Remote Sens Lett 3(1):93–97

    Article  Google Scholar 

  47. Gustavo V, Manel R, Rojo-Alvarez J et al (2007) Nonlinear system identification with composite relevance vector machines. IEEE Signal Process Lett 14(4):279–282

    Article  Google Scholar 

  48. Kingsbury N, Tay DBH, Palaniswami M (2005) Multi-scale kernel methods for classification. In: Proceedings of the IEEE workshop on machine learning for signal processing. Washington, DC, USA, pp 43−48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuankai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Wang, Y., Tan, X., Lou, J. (2023). Kernel Learning Estimation: A Model-Free Approach to Tracking Randomly Moving Object. In: Chaurasia, M.A., Juang, CF. (eds) Emerging IT/ICT and AI Technologies Affecting Society. Lecture Notes in Networks and Systems, vol 478. Springer, Singapore. https://doi.org/10.1007/978-981-19-2940-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2940-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2939-7

  • Online ISBN: 978-981-19-2940-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation