Development and Validation of a Riemann Solver in OpenFOAM for Non-ideal Compressible Fluid Dynamics

  • Chapter
  • First Online:
Simulation Tools and Methods for Supercritical Carbon Dioxide Radial Inflow Turbine

Abstract

Recently, there is an increased interest in supercritical CO\(_2\) and organic Rankine cycles (ORC) for their ability to achieve higher thermodynamic efficiency. However, the non-ideal gas thermodynamic in these cycles may affect the flow properties critically, necessitating the research on the area of non-ideal compressible fluid dynamics (NICFD). Thus, there is a necessity for simulation tools that can accurately predict fluid flows with non-ideal fluids thermodynamics. This chapter presents a new approximation Riemann solver in OpenFOAM for NICFD. The new solver uses a real-gas approximate Riemann flux calculator, which is based on look-up tables to determine the real gas properties. This is achieved by the addition of a new thermodynamic library tightly coupled with the OpenFOAM library. The HLLC ALE flux calculator has been modified to operate with the gas properties from the look-up tables. To validate the ability of the solver, three cases are analysed. These cases include a NASA transonic nozzle operating with air, to confirm the ability to correctly simulate the transonic flow phenomena and the shock waves; the VKI 2D cascade operated with MDM gas in a stationary frame to assess the ability to correctly simulate non-ideal gas flows typically to industrial applications; and the dense gas flow (MD\(_{4}\)M) passing a backward ramp to illustrate the ability of the approximate Riemann flux calculator and look-up table mechanism that can work well in the non-ideal region of fluid properties. The result is a new solver, flux calculator, and thermodynamic library integrated into OpenFOAM, which can benefit future engineering applications of computational fluid mechanics of non-ideal gas flow and the OpenFOAM community.

Jianhui Qi*, **liang Xu, Kuihua Han, Ingo J. H. Jahn*. “Development and validation of a Riemann solver in OpenFOAM for Non-ideal Compressible Fluid Dynamics”. Engineering Applications of Computational Fluid Mechanics, 2022 16(1), 116–140.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdol-Hamid KS, Elmiligui A, Hunter CA (2006) Numerical investigation of flow in an over-expanded nozzle with porous surfaces. J Aircr 43(4):1217–1225

    Article  Google Scholar 

  • Arts T, Lambertderouvroit M, Rutherford A (1990) Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: a test case for inviscid and viscous flow computations. NASA STI/Recon Technical Report N 91

    Google Scholar 

  • Batten P, Leschziner M, Goldberg U (1997) Average-state Jacobians and implicit methods for compressible viscous and turbulent flows. J Comput Phys 137(1):38–78

    Article  MathSciNet  MATH  Google Scholar 

  • Beaudoin M, Jasak H (2008) Development of a generalized grid interface for turbomachinery simulations with openfoam. In: Open source CFD international conference, Berlin, vol 2

    Google Scholar 

  • Borm O, Kau HP (2012) Unsteady aerodynamics of a centrifugal compressor stage–validation of two different CFD solvers. In: ASME turbo expo

    Google Scholar 

  • Borm O, Jemcov A, Kau HP (2011) Density based Navier stokes solver for transonic flows. In: 6th OpenFOAM workshop, PennState University, USA

    Google Scholar 

  • Chen H, Goswami DY, Stefanakos EK (2010) A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew Sustain Energy Rev 14(9):3059–3067

    Article  Google Scholar 

  • Colonna P, Rebay S (2004) Numerical simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver. Int J Numer Meth Fluids 46(7):735–765

    Article  MathSciNet  MATH  Google Scholar 

  • Colonna P, Rebay S, Harinck J, Guardone A (2006) Real-gas effects in ORC turbine flow simulations: influence of thermodynamic models on flow fields and performance parameters. In: European conference on computational fluid dynamics

    Google Scholar 

  • Colonna P, Nannan N, Guardone A (2008) Multiparameter equations of state for siloxanes:[(CH\(_3\))\(_3\)-Si-O\(_{ 1/2}\)]\(_2\)-[O-Si-(CH\(_3\))\(_2\)]\(_{i= 1,..., 3}\), and [O-Si-(CH\(_3\))\(_2\)]\(_6\). Fluid Phase Equilibria 263(2):115–130

    Google Scholar 

  • Colonna P, Nannan N, Guardone A, van der Stelt T (2009) On the computation of the fundamental derivative of gas dynamics using equations of state. Fluid Phase Equilib 286:43–54

    Article  Google Scholar 

  • Cramer M (1991) Nonclassical dynamics of classical gases. In: Nonlinear waves in real fluids, Springer, pp 91–145

    Google Scholar 

  • Cramer M, Crickenberger A (1992) Prandtl-Meyer function for dense gases. AIAA J 30(2):561–564

    Article  MATH  Google Scholar 

  • Dostal V (2004) A supercritical carbon dioxide cycle for next generation nuclear reactors. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Drikakis D, Tsangaris S (1993) On the solution of the compressible Navier-Stokes equations using improved flux vector splitting methods. Appl Math Model 17(6):282–297

    Article  MathSciNet  MATH  Google Scholar 

  • Durá Galiana FJ, Wheeler AP, Ong J (2016) A study of trailing-edge losses in organic Rankine cycle turbines. J Turbomach 138(12):121,003

    Google Scholar 

  • Economon TD, Palacios F, Copeland SR, Lukaczyk TW, Alonso JJ (2015) SU2: an open-source suite for multiphysics simulation and design. AIAA J 54(3):828–846

    Article  Google Scholar 

  • Einfeldt B (1988) On Godunov-type methods for gas dynamics. SIAM J Numer Anal 25(2):294–318

    Article  MathSciNet  MATH  Google Scholar 

  • Ghalandari M, Mirzadeh Koohshahi E, Mohamadian F, Shamshirband S, Chau KW (2019) Numerical simulation of nanofluid flow inside a root canal. Eng Appl Comput Fluid Mech 13(1):254–264

    Google Scholar 

  • Gori G (2019) Non-ideal compressible-fluid dynamics: develo** a combined perspective on modeling, numerics and experiments. PhD thesis, POLITECNICO DI MILANO

    Google Scholar 

  • Gori G, Zocca M, Cammi G, Spinelli A, Guardone A (2017) Experimental assessment of the open-source SU2 CFD suite for orc applications. Energy Procedia 129:256–263

    Article  Google Scholar 

  • He Z, Zhou K, Liu S, **ong W, Li B (2013) Numerical modeling of the fluid flow in continuous casting Tundish with different control devices. Abstr Appl Anal 2013:1–8

    MATH  Google Scholar 

  • Head AJ, De Servi C, Casati E, Pini M, Colonna P (2016) Preliminary design of the ORCHID: a facility for studying non-ideal compressible fluid dynamics and testing orc expanders. In: ASME turbo expo, pp V003T25A001–V003T25A001

    Google Scholar 

  • Head AJ, Iyer S, De Servi C, Pini M (2017) Towards the validation of a CFD solver for non-ideal compressible flows. Energy Procedia 129:240–247

    Article  Google Scholar 

  • Hunter CA (2004) Experimental investigation of separated nozzle flows. J Propul Power 20(3):527–532

    Article  Google Scholar 

  • Jasak H (2013) foam-extension 3.0 release note. https://sourceforge.net/projects/openfoam-extend/files/foam-extend-3.0/. Accessed 18 Dec 2013

  • Jasak H, Beaudoin M (2011) Openfoam turbo tools: from general purpose CFD to turbomachinery simulations. In: ASME-JSME-KSME joint fluids engineering conference (AJK2011-FED)

    Google Scholar 

  • Jassim E, Abdi MA, Muzychka Y (2008) Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: part 1. real gas effects and shockwave. Pet Sci Technol 26(15):1757–1772

    Google Scholar 

  • Kalra C, Sevincer E, Brun K, Hofer D, Moore J (2014) Development of high efficiency hot gas turbo-expander for optimized CSP supercritical CO\(_2\) power block operation. In: The 4th international symposium-supercritical CO\(_2\) power cycles, vol 2, pp 9–10

    Google Scholar 

  • Lemmon E, Huber M, McLinder M (2013) NIST reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 9.1. National Institute of Standards and Technology, Standard Reference Data Program

    Google Scholar 

  • Lemmon EW, Jacobsen RT, Penoncello SG, Friend DG (2000) Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. J Phys Chem Ref Data 29(3):331–385

    Article  Google Scholar 

  • Loewenberg MF, Laurien E, Class A, Schulenberg T (2008) Supercritical water heat transfer in vertical tubes: a look-up table. Prog Nucl Energy 50(2):532–538

    Article  Google Scholar 

  • Luo H, Baum JD, Löhner R (2004) On the computation of multi-material flows using ale formulation. J Comput Phys 194(1):304–328

    Article  MathSciNet  MATH  Google Scholar 

  • Maraver D, Royo J, Lemort V, Quoilin S (2014) Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications. Appl Energy 117:11–29

    Article  Google Scholar 

  • Menter F, Esch T (2001) Elements of industrial heat transfer predictions. In: 16th Brazilian congress of mechanical engineering (COBEM), vol 109

    Google Scholar 

  • Palacios F, Colonno MR, Aranake AC, Campos A, Copeland SR, Economon TD, Lonkar AK, Lukaczyk TW, Taylor TW, Alonso JJ (2013) Stanford University Unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design. AIAA Paper 287:2013

    Google Scholar 

  • Pini M, Spinelli A, Persico G, Rebay S (2015) Consistent look-up table interpolation method for real-gas flow simulations. Comput Fluids 107:178–188

    Article  MathSciNet  MATH  Google Scholar 

  • Qi J (2017) Rgdfoam. https://github.com/cyjanry/RGDFoam_v1/tree/master/transonicMRFDyMRealFoam. Accessed 07 Mar 2022

  • Qi J, Reddell T, Qin K, Hooman K, Jahn IH (2017) Supercritical CO\(_2\) radial turbine design performance as a function of turbine size parameters. J Turbomach 139(8):081,008

    Google Scholar 

  • Qiu J (2021) Numerical simulations of non-ideal supersonic nozzle expansions. PhD thesis, POLITECNICO DI MILANO

    Google Scholar 

  • Reis AJF (2013) Validation of NASA Rotor 67 with OpenFOAM’s transonic density-based solver. PhD thesis, Faculdade de Ciências e Tecnologia

    Google Scholar 

  • Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2):357–372

    Article  MathSciNet  MATH  Google Scholar 

  • Salih SQ, Aldlemy MS, Rasani MR, Ariffin A, Ya TMYST, Al-Ansari N, Yaseen ZM, Chau KW (2019) Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method. Eng Appl Comput Fluid Mech 13(1):860–877

    Google Scholar 

  • Smith MJ, Potsdam M, Wong TC, Baeder JD, Phanse S (2006) Evaluation of computational fluid dynamics to determine two-dimensional airfoil characteristics for rotorcraft applications. J Am Helicopter Soc 51(1):70–79

    Article  Google Scholar 

  • Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25(6):1509–1596

    Article  Google Scholar 

  • The OpenFOAM Foundation (2021) Openfoam user guide. https://cfd.direct/openfoam/user-guide. Accessed 22 Dec 2021

  • Thompson PA (1971) A fundamental derivative in gas dynamics. Phys Fluids 14(9):1843–1849

    Article  MATH  Google Scholar 

  • Thompson PA, Lambrakis K (1973) Negative shock waves. J Fluid Mech 60(1):187–208

    Article  MATH  Google Scholar 

  • Van Leer B (1977) Towards the ultimate conservative difference scheme. iv. a new approach to numerical convection. J Comput Phys 23(3):276–299

    Google Scholar 

  • Van Leer B (1982) Flux-vector splitting for the Euler equations. In: Eighth international conference on numerical methods in fluid dynamics, pp 507–512

    Google Scholar 

  • Vitale S, Gori G, Pini M, Guardone A, Economon TD, Palacios F, Alonso JJ, Colonna P (2015) Extension of the SU2 open source CFD code to the simulation of turbulent flows of fuids modelled with complex thermophysical laws. In: 22nd AIAA computational fluid dynamics conference, pp 1–22

    Google Scholar 

  • Vitale S, Albring TA, Pini M, Gauger NR, Colonna P, et al (2017) Fully turbulent discrete adjoint solver for non-ideal compressible flow applications. J Glob Power Propuls Soc 1:Z1FVOI

    Google Scholar 

  • Wang J, Huang Y, Zang J, Liu G (2015) Recent research progress on supercritical carbon dioxide power cycle in China. In: ASME turbo expo 2015: turbine technical conference and exposition. American Society of Mechanical Engineers, pp V009T36A016–V009T36A016

    Google Scholar 

  • Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631

    Article  Google Scholar 

  • Wright SA, Radel RF, Vernon ME, Rochau GE, Pickard PS (2010) Operation and analysis of a supercritical CO\(_2\) brayton cycle. Sandia Report, No SAND2010-0171

    Google Scholar 

  • Xu J, Liu C, Sun E, **e J, Li M, Yang Y, Liu J (2019) Perspective of S-CO\(_2\) power cycles. Energy 186(115):831

    Google Scholar 

  • Zhan Y, Sapatnekar SS (2005) Fast computation of the temperature distribution in VLSI chips using the discrete cosine transform and table look-up. In: The 2005 Asia and South Pacific design automation conference, pp 87–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Qi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qi, J. (2022). Development and Validation of a Riemann Solver in OpenFOAM for Non-ideal Compressible Fluid Dynamics. In: Simulation Tools and Methods for Supercritical Carbon Dioxide Radial Inflow Turbine. Springer, Singapore. https://doi.org/10.1007/978-981-19-2860-4_5

Download citation

Publish with us

Policies and ethics

Navigation