Transformable Liquid Metal Machine

  • Living reference work entry
  • First Online:
Handbook of Liquid Metals
  • 32 Accesses

Abstract

Conventional robots consisting of rigid components have successfully freed human labor from repetitive mechanical operations. However, it is still challenging for these rigid machines to perform fine operations on soft and fragile objects.

Similar to flexible machines, liquid machines should also have good transformation ability. Liquid robots have long been featured in some literature and science fiction works. An example is the T-1000 in the movie “Terminator 2”, which can flow at will, transform autonomously, and repair gunshot wounds. Although prototypes of such robots are fictional, rapid advances in science and technology are turning the idea into reality.

Room temperature liquid metals have the combined characteristics of fluid and metal, which exhibit a variety of peculiar transformation phenomena under different stimuli. For example, the surface area of liquid metal machines can change hundreds of times rapidly under electric fields. They can also transform, combine, move, and rotate between different forms. These unusual transformation phenomena make it feasible for liquid metals to perform specific tasks in complex spaces. Until now, transformable machines based on liquid metals have already been used in preliminary applications in biomedicine, sensing, and other fields.

This chapter aims to systematically sort out the research progress of liquid metal transformable machines. The wonderful properties and unique transformation ability of liquid metals lay the foundation for a new era of designing soft robots. The liquid metal convertible machine will have a broad scope for development in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Reference

  1. J. Liu, L. Sheng, Z. He, Liquid Metal Soft Machines: Principles and Applications (Springer, Singapore, 2018)

    Google Scholar 

  2. L. Sheng, J. Zhang, J. Liu, Diverse transformations of liquid metals between different morphologies. Adv. Mater. 26(34), 6036–6042 (2014)

    Article  CAS  Google Scholar 

  3. O. Schnitzer, I. Frankel, E. Yariv, Electrokinetic flows about conducting drops. J. Fluid Mech. 722, 394–423 (2013)

    Article  Google Scholar 

  4. O. Schnitzer, E. Yariv, Erratum: Nonlinear electrokinetic flow about a polarized conducting drop. Phys. Rev. E 87, 059901 (2013)

    Article  Google Scholar 

  5. P. Aussillous, D. Quéré, Properties of liquid marbles. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2067), 973–999 (2006)

    CAS  Google Scholar 

  6. S. Tang, V. Sivan, K. Khoshmanesh, Electrochemically induced actuation of liquid metal marbles. Nanoscale 5, 5949–5957 (2013)

    Article  CAS  Google Scholar 

  7. P. Aussillous, D. Quéré, Liquid marbles. Nature 411, 924–927 (2001)

    Article  CAS  Google Scholar 

  8. G. Loget, A. Kuhn, Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2, 535 (2011)

    Article  Google Scholar 

  9. J. Lee, C. Kim, Surface-tension-driven microactuation based on continuous electrowetting. J. Microelectromech. Syst. 9(2), 171–180 (2000)

    Article  CAS  Google Scholar 

  10. C. **, J. Zhang, X. Li, X. Yang, J. Li, J. Liu, Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci. Rep. 3, 3442 (2013)

    Article  Google Scholar 

  11. X. Yang, S. Tan, B. Yuan, J. Liu, Alternating electric field actuated oscillating behavior of liquid metal and its application. SCIENCE CHINA Technol. Sci. 59, 597–603 (2016)

    Article  CAS  Google Scholar 

  12. G. Beni, S. Hackwood, J.L. Jackel, Continuous electrowetting effect. Appl. Phys. Lett. 40, 912–914 (1982)

    Article  CAS  Google Scholar 

  13. Y. Tokuda, J.L.B. Moya, G. Memoli, T. Neate, D. Sahoo, S. Robinson, et al., Programmable liquid matter: 2D shape deformation of highly conductive liquid metals in a dynamic electric field, in Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, (2017), pp. 142–150

    Chapter  Google Scholar 

  14. L. Hu, L. Wang, Y. Ding, S. Zhan, J. Liu, Manipulation of liquid metals on a graphite surface. Adv. Mater. 28(41), 9210–9217 (2016)

    Article  CAS  Google Scholar 

  15. L. Wang, J. Liu, Graphite induced periodical self-actuation of liquid metal. RSC Adv. 6(65), 60729–60735 (2016)

    Article  CAS  Google Scholar 

  16. J. Zhang, L. Sheng, J. Liu, Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci. Rep. 4, 7116 (2014)

    Article  Google Scholar 

  17. S. Tang, K. Khoshmanesh, V. Sivan, K. Kalantar-zadeh, Liquid metal enabled pump. Proc. Natl. Acad. Sci. 111(9), 3304–3309 (2014)

    Article  CAS  Google Scholar 

  18. T. Liu, P. Sen, C. Kim, Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. J. Microelectromech. Syst. 21(2), 443–450 (2012)

    Article  CAS  Google Scholar 

  19. H. Marvi, C. Gong, N. Gravish, H. Astley, M. Travers, R.L. Hatton, et al., Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science 346, 224–229 (2014)

    Article  CAS  Google Scholar 

  20. A. Rafsanjani, Y. Zhang, B. Liu, S.M. Rubinstein, K. Bertoldi, Kirigami skins make a simple soft actuator crawl. Sci Robot 3(15), eaar7555 (2018)

    Article  Google Scholar 

  21. S. Chen, X. Yang, Y. Cui, J. Liu, Self-growing and serpentine locomotion of liquid metal induced by copper ions. ACS Appl. Mater. Interfaces 10(27), 22889–22895 (2018)

    Article  CAS  Google Scholar 

  22. A.P. Altshuller, The electronegativities and some electron affinities of copper, zinc, and gallium subgroup elements. J. Chem. Phys. 22(4), 765 (1954)

    Article  CAS  Google Scholar 

  23. S. Chen, J. Liu, Spontaneous dispersion and large-scale deformation of gallium-based liquid metal induced by ferric ions. J. Phys. Chem. B 123(10), 2439–2447 (2019)

    Article  CAS  Google Scholar 

  24. D. Wang, C. Gao, W. Wang, M. Sun, B. Guo, H. **e, et al., Shape-transformable, fusible rod-like swimming liquid metal nanomachine. ACS Nano 12(10), 10212–10220 (2018)

    Article  CAS  Google Scholar 

  25. H. Wang, S. Chen, B. Yuan, J. Liu, X. Sun, Liquid metal transformable machines. Accounts Mater Res 2(12), 1227–1238 (2021)

    Article  CAS  Google Scholar 

  26. H. Kim, K. Lee, J.W. Oh, Y. Kim, J.E. Park, J. Jang, et al., Shape-deformable and locomotive Mxene (Ti3C2Tx)-encapsulated magnetic liquid metal for 3D-motion-adaptive synapses. Adv. Funct. Mater. 33, 2210385 (2023)

    Article  CAS  Google Scholar 

  27. L. Hu, H. Wang, X. Wang, X. Liu, J. Guo, J. Liu, Magnetic liquid metals manipulated in the three-dimensional free space. ACS Appl. Mater. Interfaces 11(8), 8685–8692 (2019)

    Article  CAS  Google Scholar 

  28. A. Harraq, J. Lee, B. Bharti, Magnetic field-driven assembly and reconfiguration of multicomponent supraparticles. Sci. Adv. 6(19), eaba5337 (2020)

    Article  Google Scholar 

  29. H. Wang, S. Chen, H. Li, X. Chen, J. Cheng, Y. Shao, et al., A liquid gripper based on phase transitional metallic ferrofluid. Adv. Funct. Mater. 31, 2100274 (2021)

    Article  CAS  Google Scholar 

  30. W. Wang, J.V.I. Timonen, A. Carlson, D.M. Drotlef, C.T. Zhang, S. Kolle, et al., Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 559(7712), 77–82 (2018)

    Article  CAS  Google Scholar 

  31. Q. Wang, C. Pan, Y. Zhang, L. Peng, Z. Chen, C. Majidi, et al., Magnetoactive liquid-solid phase transitional matter. Matter 6, 1–18 (2022)

    Google Scholar 

  32. M. Liu, Y. Wang, Y. Kuai, J. Cong, Y. Xu, H. Piao, et al., Magnetically powered shape-transformable liquid metal micromotors. Small 15, 1905446 (2019)

    Article  CAS  Google Scholar 

  33. H. Wang, B. Yuan, S. Liang, PLUS-Materials: porous liquid-metal enabled ubiquitous soft material. Mater. Horizons 5, 222–229 (2018)

    Article  CAS  Google Scholar 

  34. H. Wang, Y. Yao, X. Wang, L. Sheng, X. Yang, Y. Cui, et al., Large-magnitude transformable liquid-metal composites. ACS. Omega 4, 2311–2319 (2019)

    Article  CAS  Google Scholar 

  35. S.A. Chechetka, Y. Yu, X. Zhen, M. Pramanik, K. Pu, E. Miyako, Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 8, 15432 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Zhou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, Y. (2024). Transformable Liquid Metal Machine. In: Liu, J., Rao, W. (eds) Handbook of Liquid Metals. Springer, Singapore. https://doi.org/10.1007/978-981-19-2797-3_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2797-3_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2797-3

  • Online ISBN: 978-981-19-2797-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation