Liquid Metal Motor

  • Living reference work entry
  • First Online:
Handbook of Liquid Metals
  • 39 Accesses

Abstract

In the last decade, swimming motors for navigation in complex fluid environments have received significant attention. As an emerging material, liquid metal shows great potential for further development of swimming motors due to its unique flexibility, reconfigurability, and stimulus responsiveness.

The present laboratory found for the first time that liquid metal can move spontaneously in alkaline solution after swallowing aluminum. Based on this, via direct injection, the liquid metal containing aluminum can maintain the ability to move even after dispersing into millimeter-sized tiny droplets. Therefore, these tiny droplets are also called liquid metal motors. This process is highly efficient to operate and does not require complex equipment conditions to obtain autonomously operating soft motors in bulk and quickly. In addition to this chemical approach, liquid metals have also achieved strong self-propulsion in response to external field stimuli, including electric, magnetic, acoustic and optical fields, and corresponding hybrid propulsion. Liquid metal motors offer new and unique capabilities in the field of swimming motors, allowing not only directional movements, but also deformations due to their liquid nature.

This chapter will first present the typical characteristics of liquid metal motors. Then, the different principles and methods behind the fabrication and propulsion of liquid metal motors will be illustrated, including the compounding of special materials and the use of external field stimulation. Finally, the possible applications and challenges of liquid metal motors will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J. Tang, J. Wang, J. Liu, Y. Zhou, Jum** liquid metal droplet in electrolyte triggered by solid metal particles. Appl. Phys. Lett. 108(22), 223901 (2016)

    Article  Google Scholar 

  2. Y. Wang, W. Duan, C. Zhou, Q. Liu, J. Gu, H. Ye, et al., Phoretic liquid metal micro/nanomotors as intelligent filler for targeted microwelding. Adv. Mater. 31, 1905067 (2019)

    Article  CAS  Google Scholar 

  3. A. Zavabeti, T. Daeneke, A.F. Chrimes, A.P. O’Mullane, J.Z. Ou, A. Mitchell, et al., Ionic imbalance induced self-propulsion of liquid metals. Nat. Commun. 7, 12402 (2016)

    Article  CAS  Google Scholar 

  4. Y. Cui, F. Liang, Z. Yang, S. Xu, X. Zhao, Y. Ding, et al., Metallic bond-enabled wetting behavior at the liquid Ga/CuGa2 interfaces. ACS Appl. Mater. Interfaces 10, 9203–9210 (2018)

    Article  CAS  Google Scholar 

  5. J. Zhang, Y. Yao, L. Sheng, J. Liu, Self-fueled biomimetic liquid metal mollusk. Adv. Mater. 27(16), 2648–2655 (2015)

    Article  CAS  Google Scholar 

  6. Y. Yao, L. Sheng, J. Liu, Injectable spontaneous generation of tremendous self-fuelled liquid metal droplet motors in a moment. ar**v:1504.02851 (2015)

    Google Scholar 

  7. W. Gao, A. Pei, J. Wang, Water-driven micromotors. ACS Nano 6(9), 8432–8438 (2012)

    Article  CAS  Google Scholar 

  8. S. Xu, B. Yuan, Y. Hou, T. Liu, J. Fu, J. Liu, Self-fueled liquid metal motors. J. Phys. D. Appl. Phys. 52(35), 353002 (2019)

    Article  CAS  Google Scholar 

  9. B. Yuan, S. Tan, Y. Zhou, Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Sci. Bull. 60(13), 1203–1210 (2015)

    Article  Google Scholar 

  10. M.D. Haw, Colloidal suspensions, Brownian motion, molecular reality: a short history. J. Phys. Condens. Matter 14(33), 7769–7779 (2002)

    Article  CAS  Google Scholar 

  11. N. Gupta, S. Ghosh, A report on the Wilson cloud chamber and its applications in physics. Rev. Mod. Phys. 18, 225–290 (1946)

    Article  Google Scholar 

  12. J. Liu, L. Sheng, Z. He, Liquid Metal Soft Machines: Principles and Applications (Springer, Singapore, 2018)

    Google Scholar 

  13. Y. Yu, Q. Wang, L. Yi, J. Liu, Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv. Eng. Mater. 16, 255–262 (2014)

    Article  CAS  Google Scholar 

  14. D.O. Flamini, S.B. Saidman, J.B. Bessone, Aluminium activation produced by gallium. Corros. Sci. 48(6), 1413–1425 (2006)

    Article  CAS  Google Scholar 

  15. J.T. Ziebarth, J.M. Woodall, R.A. Kramer, G. Choi, Liquid phase-enabled reaction of Al-Ga and Al-Ga-in-Sn alloys with water. Int. J. Hydrog. Energy 36, 5271–5279 (2011)

    Article  CAS  Google Scholar 

  16. S.Y. Tang, V. Sivan, P. Petersen, W. Zhang, P.D. Morrison, K. Kalantar-zadeh, et al., Liquid metal actuator for inducing chaotic advection. Adv. Funct. Mater. 24, 5851–5858 (2014)

    Article  CAS  Google Scholar 

  17. P. Mazur, On the theory of Brownian motion. Physica 25, 149–162 (1959)

    Article  CAS  Google Scholar 

  18. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff Publishers, Leiden, 1983)

    Book  Google Scholar 

  19. D. Aarts, H. Lekkerkerker, Droplet coalescence: Drainage, film rupture and neck growth in ultralow interfacial tension systems. J. Fluid Mech. 606, 275–294 (2008)

    Article  CAS  Google Scholar 

  20. L. Sheng, Z. He, Y. Yao, J. Liu, Transient state machine enabled from the colliding and coalescence of a swarm of autonomously running liquid metal motors. Small 11(39), 5253–5261 (2015)

    Article  CAS  Google Scholar 

  21. J.G. Gibbs, Y. Zhao, Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94(16), 759–762 (2009)

    Article  Google Scholar 

  22. S. Tan, B. Yuan, J. Liu, Electrical method to control the running direction and speed of self-powered tiny liquid metal motors. Proc. R. Soc. A Math. Phys. 471(2183), 1–10 (2016)

    Google Scholar 

  23. W. Fang, Z. He, J. Liu, Electro-hydrodynamic shotting phenomenon of liquid metal stream. Appl. Phys. Lett. 105(13), 134104 (2014)

    Article  Google Scholar 

  24. S. Tan, H. Gui, B. Yuan, J. Liu, Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Appl. Phys. Lett. 107(7), 071904 (2015)

    Article  Google Scholar 

  25. L. Liu, D. Wang, W. Rao, Mini/micro/nano scale liquid metal motors. Micromachines 12(3), 280 (2021)

    Article  Google Scholar 

  26. H. Liu, M. Li, Y. Li, H. Yang, A. Li, T. Lu, et al., Magnetic steering of liquid metal mobiles. Soft Matter 14, 3236–3245 (2018)

    Article  CAS  Google Scholar 

  27. M. Liu, Y. Wang, Y. Kuai, J. Cong, Y. Xu, H. Piao, et al., Magnetically powered shape-transformable liquid metal micromotors. Small 15, 1905446 (2019)

    Article  CAS  Google Scholar 

  28. J. Shu, S.Y. Tang, Z. Feng, W. Li, X. Li, S. Zhang, Unconventional locomotion of liquid metal droplets driven by magnetic fields. Soft Matter 14, 7113–7118 (2018)

    Article  CAS  Google Scholar 

  29. J. Zhang, R. Guo, J. Liu, Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J. Mater. Chem. B 4(32), 5349–53557 (2016)

    Article  CAS  Google Scholar 

  30. D. Wang, C. Gao, W. Wang, M. Sun, B. Guo, H. **e, et al., Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano 12(10), 10212–10220 (2018)

    Article  CAS  Google Scholar 

  31. Z. Li, H. Zhang, Z. Wu, Q. He, Acoustically-propelled rodlike liquid metal colloidal motors. ChemNanoMat 7(9), 1025 (2021)

    Article  CAS  Google Scholar 

  32. Z. Li, H. Zhang, D. Wang, C. Gao, M. Sun, Z. Wu, et al., Reconfigurable assembly of active liquid metal colloidal cluster. Angew. Chem. Int. Ed. 59(45), 19884–19888 (2020)

    Article  CAS  Google Scholar 

  33. W. Gao, A. Uygun, J. Wang, Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J. Am. Chem. Soc. 134(2), 897–900 (2012)

    Article  CAS  Google Scholar 

  34. W. Gao, X. Feng, A. Pei, Y. Gu, J. Li, J. Wang, Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5, 4696–4700 (2013)

    Article  CAS  Google Scholar 

  35. X. Tang, S.Y. Tang, V. Sivan, W. Zhang, A. Mitchell, K. Kalantar-zadeh, et al., Photochemically induced motion of liquid metal marbles. Appl. Phys. Lett. 103(17), 174104 (2013)

    Article  Google Scholar 

  36. D. Wang, C. Gao, T. Si, Z. Li, B. Guo, Q. He, Near-infrared light propelled motion of needlelike liquid metal nanoswimmers. Colloids Surf. A Physicochem. Eng. Asp. 611, 125865 (2021)

    Article  CAS  Google Scholar 

  37. Y. Zhou, J. Zu, J. Liu, Programmable intelligent liquid matter: material, science and technology. J. Micromech. Microeng. 32(10), 103001 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Zhou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, Y. (2024). Liquid Metal Motor. In: Liu, J., Rao, W. (eds) Handbook of Liquid Metals. Springer, Singapore. https://doi.org/10.1007/978-981-19-2797-3_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2797-3_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2797-3

  • Online ISBN: 978-981-19-2797-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation