Organocatalysis: A Versatile Tool for Asymmetric Green Organic Syntheses

  • Chapter
  • First Online:
Green Chemistry

Abstract

An organocatalyst can be defined as small organic molecules, which can catalyze a wide range of important asymmetric organic transformations without use of transition metals and enzymes. The concept of organocatalysis emerged to develop such catalysts which could be environmentally benign, reduce the limitations associated with metal and enzyme-catalyzed reactions and of course, equally productive in terms of yield and stereoselectivity. Transition metal catalysts have wider range of applicability in chemical transformations but are toxic in nature. Enzymes, on the other hand, are environmentally benign but have limited substrate scope. Addressing these shortcomings, organocatalysts are relatively nontoxic, stable to air and water, easily handled, eco-friendly, and readily separable from crude reaction mixture which makes them a fantastic tool for organic synthesis in pharmaceutical industries and academia. Furthermore, they are inexpensive in comparison to transition metal catalysts and have wide substrate scope too. For instance, organocatalysts have broad applicability in multicomponent and multistep domino or tandem reactions, which can afford small and complex molecules like natural products with high stereoselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalko, P.I.: Asymmetric organocatalysis: a new stream in organic synthesis. Enantioselective Organocatalysis React. Exp. Proced. (2007)

    Google Scholar 

  2. Jacobsen, E.N., Pfaltz, A., Yamamoto, H.: Comprehensive Asymmetric Catalysis: Supplement 1, vol. 1. Springer Science & Business Media (2003)

    Google Scholar 

  3. Kampen, D., Reisinger, C.M., List, B.: Chiral Brønsted acids for asymmetric organocatalysis. Asymmetric Organocatalysis 1–37 (2010)

    Google Scholar 

  4. Prelog, V., Wilhelm, M.: Untersuchungen Über Asymmetrische Synthesen VI. Der Reaktionsmechanismus Und Der Sterische Verlauf Der Asymmetrischen Cyanhydrin‐Synthese. Helv. Chim. Acta 37(6), 1634–1660 (1954)

    Google Scholar 

  5. Pracejus, H.: Organische Katalysatoren, LXI. Asymmetrische Synthesen Mit Ketenen, I. Alkaloid-Katalysierte Asymmetrische Synthesen von α-Phenyl-Propionsäureestern. Justus Liebigs Ann. Chem. 634(1), 9–22 (1960)

    Google Scholar 

  6. Långström, B., Bergson, G., Hjeds, H., Songstad, J., Norbury, A.H., Swahn, C.-G.: Asymmetric induction in a Michael-Type reaction. Acta Chem. Scand. 27, 3118–3119 (1973)

    Article  Google Scholar 

  7. Hajos, Z.G., Parrish, D.R.: Synthesis and conversion of 2-Methyl-2-(3-Oxobutyl)-1,3-cyclopentanedione to the isomeric Racemic Ketols of the [3.2.1]bicyclooctane and of the perhydroindane series. J. Org. Chem. 39(12), 1612–1615 (1974)

    Google Scholar 

  8. Hajos, Z.G., Parrish, D.R.: Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 39(12), 1615–1621 (1974)

    Article  CAS  Google Scholar 

  9. List, B., Turberg, M.: The Hajos–Parrish–Eder–Sauer–Wiechert reaction. Synfacts 15(2), 0200 (2019)

    Article  Google Scholar 

  10. List, B., Hoang, L., Martin, H.J.: New mechanistic studies on the Proline-Catalyzed Aldol reaction. Proc. Natl. Acad. Sci. U. S. A. 101(16), 5839 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. List, B.: Asymmetric aminocatalysis. Synlett 11, 1675–1686 (2001)

    Article  Google Scholar 

  12. List, B., Lerner, R.A., Barbas, C.F.: Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 122(10), 2395–2396 (2000)

    Article  CAS  Google Scholar 

  13. Seayad, J., List, B.: Asymmetric organocatalysis. Org. Biomol. Chem. 3(5), 719–724 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Tu, Y., Wang, Z.-X., Shi, Y.: An efficient asymmetric epoxidation method for trans-olefins mediated by a fructose-derived ketone. J. Am. Chem. Soc. 118(40), 9806–9807 (1996)

    Article  CAS  Google Scholar 

  15. Tian, H., She, X., Xu, J., Shi, Y.: Enantioselective epoxidation of terminal olefins by Chiral Dioxirane. Org. Lett. 3(12), 1929–1931 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Wu, X.-Y., She, X., Shi, Y.: Highly enantioselective epoxidation of α, β-unsaturated esters by Chiral Dioxirane. J. Am. Chem. Soc. 124(30), 8792–8793 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Boutureira, O., McGouran, J.F., Stafford, R.L., Emmerson, D.P.G., Davis, B.G.: Accessible sugars as asymmetric olefin epoxidation organocatalysts: glucosaminide ketones in the synthesis of terminal epoxides. Org. Biomol. Chem. 7(20), 4285–4288 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. Corey, E.J., Grogan, M.J.: Enantioselective synthesis of α-amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst. Org. Lett. 1(1), 157–160 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka, K., Mori, A., Inoue, S.: The cyclic dipeptide cyclo [(S)-phenylalanyl-(S)-histidyl] as a catalyst for asymmetric addition of hydrogen cyanide to aldehydes. J. Org. Chem. 55(1), 181–185 (1990)

    Article  CAS  Google Scholar 

  20. Iyer, M.S., Gigstad, K.M., Namdev, N.D., Lipton, M.: Asymmetric catalysis of the Strecker amino acid synthesis by a cyclic dipeptide. Amino Acids 11(3–4), 259–268 (1996)

    Article  CAS  PubMed  Google Scholar 

  21. Ishikawa, T., Araki, Y., Kumamoto, T., Seki, H., Fukuda, K., Isobe, T.: Modified guanidines as Chiral superbases: application to asymmetric michael reaction of glycine imine with acrylate or its related compounds. Chem. Commun. 3, 245–246 (2001)

    Article  Google Scholar 

  22. Okino, T., Nakamura, S., Furukawa, T., Takemoto, Y.: Enantioselective Aza-Henry reaction catalyzed by a bifunctional organocatalyst. Org. Lett. 6(4), 625–627 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Okino, T., Hoashi, Y., Takemoto, Y.: Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J. Am. Chem. Soc. 125(42), 12672–12673 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Nugent, B.M., Yoder, R.A., Johnston, J.N.: Chiral proton catalysis: a catalytic enantioselective direct Aza-Henry reaction. J. Am. Chem. Soc. 126(11), 3418–3419 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Sigman, M.S., Jacobsen, E.N.: Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc. 120(19), 4901–4902 (1998)

    Article  CAS  Google Scholar 

  26. Taylor, M.S., Jacobsen, E.N.: Highly enantioselective catalytic Acyl-Pictet−Spengler reactions. J. Am. Chem. Soc. 126(34), 10558–10559 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Joly, G.D., Jacobsen, E.N.: Thiourea-catalyzed enantioselective hydrophosphonylation of imines: practical access to enantiomerically enriched α-amino phosphonic acids. J. Am. Chem. Soc. 126(13), 4102–4103 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Wenzel, A.G., Jacobsen, E.N.: Asymmetric Catalytic Mannich Reactions catalyzed by urea derivatives: enantioselective synthesis of β-aryl-β-amino acids. J. Am. Chem. Soc. 124(44), 12964–12965 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. Schiff, H.: Sur Quelques Dérivés Phéniques Des Aldéhydes. Ann. Chim. 131, 118 (1864)

    Article  Google Scholar 

  30. Erkkilä, A., Majander, I., Pihko, P.M.: Iminium catalysis. Chem. Rev. 107(12), 5416–5470 (2007)

    Article  PubMed  CAS  Google Scholar 

  31. Tietze, L.F., Beifuss, U.: In: Trost, B.M. (ed.) Comprehensive Organic Synthesis, vol. 2. Pergamon Press, Oxford, UK (1991)

    Google Scholar 

  32. Tietze, L.F., Beifuss, U., Trost, B.M.: Comprehensive organic. Synthesis II, 341–394 (1991)

    Google Scholar 

  33. Knoevenagel, E.: Ueber Eine Darstellungsweise Der Glutarsäure. Berichte der Dtsch. Chem. Gesellschaft 27(2), 2345–2346 (1894)

    Article  Google Scholar 

  34. Blanchard, K.C., Klein, D.L., MacDonald, J.: Positive Ion catalysis in the Knoevenagel Reaction. J. Am. Chem. Soc. 53(7), 2809–2810 (1931)

    Article  CAS  Google Scholar 

  35. Crowell, T.I., Peck, D.W.: Kinetic evidence for a Schiff base intermediate in the Knoevenagel condensation1. J. Am. Chem. Soc. 75(5), 1075–1077 (1953)

    Article  CAS  Google Scholar 

  36. Widmark, E., Jeppsson, C.A.: Ein Definierter Organischer Katalysator Mit Wasserstoffionoptimum 1. Skand. Arch. Physiol. 42(1), 43–61 (1922)

    Article  CAS  Google Scholar 

  37. Cordes, E.H., Jencks, W.P.: Nucleophilic catalysis of semicarbazone formation by Anilines. J. Am. Chem. Soc. 84(5), 826–831 (1962)

    Article  CAS  Google Scholar 

  38. Roberts, R.D., Ferran, H.E., Jr., Gula, M.J., Spencer, T.A.: Superiority of very weakly basic amines as catalysts for Alpha-Proton abstraction via iminium ion formation. J. Am. Chem. Soc. 102(23), 7054–7058 (1980)

    Article  CAS  Google Scholar 

  39. Williams, A., Bender, M.L.: Studies on the mechanism of oxime and ketimine formation1. J. Am. Chem. Soc. 88(11), 2508–2513 (1966)

    Article  CAS  Google Scholar 

  40. Fridovich, I., Westheimer, F.H.: On the mechanism of the enzymatic decarboxylation of acetoacetate II. J. Am. Chem. Soc. 84(16), 3208–3209 (1962)

    Article  CAS  Google Scholar 

  41. Hupe, D.J., Kendall, M.C.R., Spencer, T.A.: Amine catalysis of elimination from. Beta.-acetoxy ketone. Catalysis via iminium ion formation. J. Am. Chem. Soc. 94(4), 1254–1263 (1972)

    Google Scholar 

  42. Baum, J.S., Viehe, H.G.: Synthesis and cycloaddition reactions of acetylenic iminium compounds. J. Org. Chem. 41(2), 183–187 (1976)

    Article  CAS  Google Scholar 

  43. Ahrendt, K.A., Borths, C.J., MacMillan, D.W.C.: New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels−Alder reaction. J. Am. Chem. Soc. 122(17), 4243–4244 (2000)

    Article  CAS  Google Scholar 

  44. https://www.nobelprize.org/prizes/chemistry/2021/prize-announcement/

  45. Gordillo, R., Houk, K.N.: Origins of stereoselectivity in Diels−Alder cycloadditions catalyzed by Chiral imidazolidinones. J. Am. Chem. Soc. 128(11), 3543–3553 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Allemann, C., Gordillo, R., Clemente, F.R., Cheong, P.H.-Y., Houk, K.N.: Theory of asymmetric organocatalysis of aldol and related reactions: rationalizations and predictions. Acc. Chem. Res. 37(8), 558–569 (2004)

    Article  CAS  PubMed  Google Scholar 

  47. Benaglia, M., Celentano, G., Cinquini, M., Puglisi, A., Cozzi, F.: Poly (Ethylene Glycol)-supported chiral imidazolidin-4-one: an efficient organic catalyst for the enantioselective Diels-Alder Cycloaddition. Adv. Synth. Catal. 344(2), 149–152 (2002)

    Article  CAS  Google Scholar 

  48. Selkälä, S.A., Tois, J., Pihko, P.M., Koskinen, A.M.P.: Asymmetric organocatalytic Diels-Alder reactions on solid support. Adv. Synth. Catal. 344(9), 941–945 (2002)

    Article  Google Scholar 

  49. Chu, Q., Zhang, W., Curran, D.P.: A recyclable fluorous organocatalyst for Diels-Alder reactions. Tetrahedron Lett. 47(52), 9287–9290 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gin, D.L., Lu, X., Nemade, P.R., Pecinovsky, C.S., Xu, Y., Zhou, M.: Recent advances in the design of polymerizable lyotropic liquid crystal assemblies for heterogeneous catalysis and selective separations. Adv. Funct. Mater. 16(7), 865–878 (2006)

    Article  CAS  Google Scholar 

  51. Pecinovsky, C.S., Nicodemus, G.D., Gin, D.L.: Nanostructured, solid-state organic, chiral Diels−Alder catalysts via acid-induced liquid crystal assembly. Chem. Mater. 17(20), 4889–4891 (2005)

    Article  CAS  Google Scholar 

  52. Zhang, Y., Zhao, L., Lee, S.S., Ying, J.Y.: Enantioselective catalysis over chiral imidazolidin-4-one immobilized on siliceous and polymer-coated mesocellular foams. Adv. Synth. Catal. 348(15), 2027–2032 (2006)

    Article  CAS  Google Scholar 

  53. Northrup, A.B., MacMillan, D.W.C.: The first general enantioselective catalytic Diels−Alder reaction with simple α, β-unsaturated ketones. J. Am. Chem. Soc. 124(11), 2458–2460 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. Selkälä, S.A., Koskinen, A.M.P.: Preparation of bicyclo [4. 3. 0] nonanes by an organocatalytic intramolecular Diels-Alder reaction. Eur. J. Org. Chem. 2005(8), 1620–1624 (2005)

    Google Scholar 

  55. Wilson, R.M., Jen, W.S., MacMillan, D.W.C.: Enantioselective organocatalytic intramolecular Diels−Alder reactions. The asymmetric synthesis of solanapyrone D. J. Am. Chem. Soc. 127(33), 11616–11617 (2005)

    Google Scholar 

  56. Yamaguchi, M., Yokota, N., Minami, T.: The Michael addition of dimethyl malonate to α, β-unsaturated aldehydes catalysed by Proline Lithium salt. J. Chem. Soc. Chem. Commun. 16, 1088–1089 (1991)

    Article  Google Scholar 

  57. Yamaguchi, M., Shiraishi, T., Hirama, M.: A catalytic enantioselective Michael addition of a simple malonate to prochiral α, β-unsaturated ketoses and aldehydes. Angew. Chemie Int. Ed. Eng. 32(8), 1176–1178 (1993)

    Article  Google Scholar 

  58. Kawara, A., Taguchi, T.: An enantioselective michael addition of soft nucleophiles to prochiral enone catalyzed by (2-pyrrolidyl) alkyl ammonium hydroxide. Tetrahedron Lett. 35(47), 8805–8808 (1994)

    Article  CAS  Google Scholar 

  59. Yamaguchi, M., Shiraishi, T., Hirama, M.: Asymmetric Michael addition of malonate anions to prochiral acceptors catalyzed by l-proline rubidium salt. J. Org. Chem. 61(10), 3520–3530 (1996)

    Article  CAS  Google Scholar 

  60. Halland, N., Aburel, P.S., Jørgensen, K.A.: Highly enantioselective organocatalytic conjugate addition of malonates to acyclic α, β-unsaturated enones. Angew. Chemie 115(6), 685–689 (2003)

    Article  Google Scholar 

  61. Knudsen, K.R., Mitchell, C.E.T., Ley, S.V.: Asymmetric organocatalytic conjugate addition of malonates to enones using a proline tetrazole catalyst. Chem. Commun. 1, 66–68 (2006)

    Article  Google Scholar 

  62. Mitchell, C.E.T., Brenner, S.E., Ley, S.V.: A versatile organocatalyst for the asymmetric conjugate addition of nitroalkanes to enones. Chem. Commun. 42, 5346–5348 (2005)

    Article  CAS  Google Scholar 

  63. Brandau, S., Landa, A., Franzén, J., Marigo, M., Jørgensen, K.A.: Organocatalytic conjugate addition of malonates to α, β-unsaturated aldehydes: asymmetric formal synthesis of (−)-paroxetine, chiral lactams, and lactones. Angew. Chemie Int. Ed. 45(26), 4305–4309 (2006)

    Article  CAS  Google Scholar 

  64. Halland, N., Hansen, T., Jørgensen, K.A.: Organocatalytic asymmetric Michael reaction of cyclic 1, 3-dicarbonyl compounds and α, β-unsaturated ketones—a highly atom-economic catalytic one-step formation of optically active warfarin anticoagulant. Angew. Chem. 115(40), 5105–5107 (2003)

    Article  Google Scholar 

  65. Kim, H., Yen, C., Preston, P., Chin, J.: Substrate-directed stereoselectivity in vicinal diamine-catalyzed synthesis of Warfarin. Org. Lett. 8(23), 5239–5242 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. Kunz, R.K., MacMillan, D.W.C.: Enantioselective organocatalytic cyclopropanations. The identification of a new class of iminium catalyst based upon directed electrostatic activation. J. Am. Chem. Soc. 127(10), 3240–3241 (2005)

    Google Scholar 

  67. Hansen, H.M., Longbottom, D.A., Ley, S.V.: A new asymmetric organocatalytic nitrocyclopropanation reaction. Chem. Commun. 46, 4838–4840 (2006)

    Article  CAS  Google Scholar 

  68. Marigo, M., Franzen, J., Poulsen, T.B., Zhuang, W., Jørgensen, K.A.: Asymmetric organocatalytic epoxidation of α, β-unsaturated aldehydes with hydrogen peroxide. J. Am. Chem. Soc. 127(19), 6964–6965 (2005)

    Article  CAS  PubMed  Google Scholar 

  69. Lee, S., MacMillan, D.W.C.: Enantioselective organocatalytic epoxidation using hypervalent iodine reagents. Tetrahedron 62(49), 11413–11424 (2006)

    Article  CAS  Google Scholar 

  70. Vesely, J., Ibrahem, I., Zhao, G., Rios, R., Córdova, A.: Organocatalytic enantioselective aziridination of α, β-unsaturated aldehydes. Angew. Chemie 119(5), 792–795 (2007)

    Article  Google Scholar 

  71. Yang, J.W., Hechavarria Fonseca, M.T., List, B.: Catalytic asymmetric reductive Michael cyclization. J. Am. Chem. Soc. 127(43), 15036–15037 (2005)

    Article  CAS  PubMed  Google Scholar 

  72. Bui, T., Barbas, C.F., III.: A proline-catalyzed asymmetric Robinson annulation reaction. Tetrahedron Lett. 41(36), 6951–6954 (2000)

    Article  CAS  Google Scholar 

  73. Rajagopal, D., Narayanan, R., Swaminathan, S.: Asymmetric one-pot Robinson annulations. Tetrahedron Lett. 42(29), 4887–4890 (2001)

    Article  CAS  Google Scholar 

  74. Zou, Y.-Q., Hörmann, F.M., Bach, T.: Iminium and enamine catalysis in enantioselective photochemical reactions. Chem. Soc. Rev. 47(2), 278–290 (2018)

    Article  CAS  PubMed  Google Scholar 

  75. Mukherjee, S., Yang, J.W., Hoffmann, S., List, B.: Asymmetric enamine catalysis. Chem. Rev. 107(12), 5471–5569 (2007)

    Article  CAS  PubMed  Google Scholar 

  76. Rappoport, Z.: The Chemistry of Enamines. Wiley & Sons (1994)

    Google Scholar 

  77. Machajewski, T.D., Wong, C.: The catalytic asymmetric Aldol Reaction. Angew. Chemie Int. Ed. 39(8), 1352–1375 (2000)

    Article  CAS  Google Scholar 

  78. Trost, B.M., Schreiber, S.L.: Comprehensive Organic Synthesis Selectivity, Strategy & Efficiency in Modem Organic Chemistry Vol 1. Pergamon Press

    Google Scholar 

  79. Mahrwald, R.: Modern Aldol Reactions. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, vol. 1 and 2 (2004)

    Google Scholar 

  80. Terashima, S., Sato, S., Koga, K.: Regioselective intramolecular asymmetric cyclization of symmetrical open chain triketone. Tetrahedron Lett. 20(36), 3469–3472 (1979)

    Article  Google Scholar 

  81. Takano, S., Kasahara, C., Ogasawara, K.: Enantioselective synthesis of the Gibbane framework. J. Chem. Soc. Chem. Commun. 13, 635–637 (1981)

    Article  Google Scholar 

  82. Blazejewski, J.: The Angular Trifluoromethyl Group. Part 2. Synthesis of (+) 2, 3, 7, 7a-Tetrahydro-7a-Trifluoromethyl-1H-Indene-1, 5-(6H)-Dione. J. Fluor. Chem. 46(3), 515–519 (1990)

    Google Scholar 

  83. Danishefsky, S.J., Masters, J.J., Young, W.B., Link, J.T., Snyder, L.B., Magee, T.V., Jung, D.K., Isaacs, R.C.A., Bornmann, W.G., Alaimo, C.A.: Total synthesis of baccatin III and taxol. J. Am. Chem. Soc. 118(12), 2843–2859 (1996)

    Article  CAS  Google Scholar 

  84. Danishefsky, S., Cain, P.: Optically specific synthesis of estrone and 19-norsteroids from 2, 6-lutidine. J. Am. Chem. Soc. 98(16), 4975–4983 (1976)

    Article  CAS  PubMed  Google Scholar 

  85. Agami, C., Meynier, F., Puchot, C., Guilhem, J., Pascard, C.: Stereochemistry-59: new insights into the mechanism of the proline-catalyzed asymmetric Robinson cyclization; structure of two intermediates asymmetric dehydration. Tetrahedron 40(6), 1031–1038 (1984)

    Article  CAS  Google Scholar 

  86. Pidathala, C., Hoang, L., Vignola, N., List, B.: Direct catalytic asymmetric enolexo aldolizations. Angew. Chemie Int. Ed. 42(24), 2785–2788 (2003)

    Article  CAS  Google Scholar 

  87. Mans, D.M., Pearson, W.H.: Total synthesis of (+)-cocaine via desymmetrization of a meso-dialdehyde. Org. Lett. 6(19), 3305–3308 (2004)

    Article  CAS  PubMed  Google Scholar 

  88. Enders, D., Niemeier, O., Straver, L.: Asymmetric organocatalytic synthesis of Cis-substituted dihydrobenzofuranols via intramolecular aldol reactions. Synlett 20, 3399–3402 (2006)

    Article  CAS  Google Scholar 

  89. Stork, G., Brizzolara, A., Landesman, H., Szmuszkovicz, J., Terrell, R.: The enamine alkylation and acylation of carbonyl compounds. J. Am. Chem. Soc. 85(2), 207–222 (1963)

    Article  CAS  Google Scholar 

  90. List, B.: Enamine catalysis is a powerful strategy for the catalytic generation and use of carbanion equivalents. Acc. Chem. Res. 37(8), 548–557 (2004)

    Article  CAS  PubMed  Google Scholar 

  91. Clemente, F.R., Houk, K.N.: Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by Proline. Angew. Chemie Int. Ed. 43(43), 5766–5768 (2004)

    Article  CAS  Google Scholar 

  92. Hoang, L., Bahmanyar, S., Houk, K.N., List, B.: Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition states of proline-catalyzed intra- and intermolecular aldol reactions. J. Am. Chem. Soc. 125(1), 16–17 (2003)

    Article  CAS  PubMed  Google Scholar 

  93. Agami, C., Levisalles, J., Puchot, C.: A new diagnostic tool for elucidating the mechanism of enantioselective reactions. Application to the Hajos–Parrish reaction. J. Chem. Soc. Chem. Commun. 8, 441–442 (1985)

    Google Scholar 

  94. Agami, C., Levisalles, J., Sevestre, H.: Extension of the Proline-catalysed asymmetric annelation to diketones. A new case of kinetic resolution. J. Chem. Soc. Chem. Commun. 7, 418–420 (1984)

    Google Scholar 

  95. Puchot, C., Samuel, O., Dunach, E., Zhao, S., Agami, C., Kagan, H.B.: Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidations and aldolization reactions. J. Am. Chem. Soc. 108(9), 2353–2357 (1986)

    Google Scholar 

  96. Jung, M.E.: A review of annulation. Tetrahedron 32(1), 3–31 (1976)

    Article  CAS  Google Scholar 

  97. Rajagopal, D., Moni, M.S., Subramanian, S., Swaminathan, S.: Proline mediated asymmetric Ketol cyclization: a template reaction. Tetrahedron: Asymmetry 10(9), 1631–1634 (1999)

    Google Scholar 

  98. Tang, Z., Cun, L.-F., Cui, X., Mi, A.-Q., Jiang, Y.-Z., Gong, L.-Z.: Design of highly enantioselective organocatalysts based on molecular recognition. Org. Lett. 8(7), 1263–1266 (2006)

    Article  CAS  PubMed  Google Scholar 

  99. Dambruoso, P., Massi, A., Dondoni, A.: Efficiency in isotetronic acid synthesis via a Diamine−Acid couple catalyzed ethyl pyruvate homoaldol reaction. Org. Lett. 7(21), 4657–4660 (2005)

    Article  CAS  PubMed  Google Scholar 

  100. Samanta, S., Liu, J., Dodda, R., Zhao, C.-G.: C 2-symmetric bisprolinamide as a highly efficient catalyst for direct aldol reaction. Org. Lett. 7(23), 5321–5323 (2005)

    Article  CAS  PubMed  Google Scholar 

  101. Ikishima, H., Sekiguchi, Y., Ichikawa, Y., Kotsuki, H.: Synthesis of (−)-(5R, 6S)-6-acetoxyhexadecanolide based on l-proline-catalyzed asymmetric aldol reactions. Tetrahedron 62(2–3), 311–316 (2006)

    Article  CAS  Google Scholar 

  102. Coulthard, G., Erb, W., Aggarwal, V.K.: Stereocontrolled organocatalytic synthesis of prostaglandin PGF 2α in seven steps. Nature 489(7415), 278–281 (2012)

    Article  CAS  PubMed  Google Scholar 

  103. Funk, C.D.: Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548), 1871–1875 (2001)

    Article  CAS  PubMed  Google Scholar 

  104. Collins, P.W., Djuric, S.W.: Synthesis of therapeutically useful prostaglandin and prostacyclin analogs. Chem. Rev. 93(4), 1533–1564 (1993)

    Article  CAS  Google Scholar 

  105. Notz, W., Tanaka, F., Barbas, C.F.: Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels−Alder Reactions. Acc. Chem. Res. 37(8), 580–591 (2004)

    Article  CAS  PubMed  Google Scholar 

  106. Córdova, A., Zou, W., Ibrahem, I., Reyes, E., Engqvist, M., Liao, W.-W.: Acyclic amino acid-catalyzed direct asymmetric aldol reactions: alanine, the simplest stereoselective organocatalyst. Chem. Commun. 28, 3586–3588 (2005)

    Article  CAS  Google Scholar 

  107. Markert, M., Mulzer, M., Schetter, B., Mahrwald, R.: Amine-catalyzed direct aldol addition. J. Am. Chem. Soc. 129(23), 7258–7259 (2007)

    Article  CAS  PubMed  Google Scholar 

  108. Tang, Z., Jiang, F., Yu, L.-T., Cui, X., Gong, L.-Z., Mi, A.-Q., Jiang, Y.-Z., Wu, Y.-D.: Novel small organic molecules for a highly enantioselective direct aldol reaction. J. Am. Chem. Soc. 125(18), 5262–5263 (2003)

    Article  CAS  PubMed  Google Scholar 

  109. Tang, Z., Jiang, F., Cui, X., Gong, L.-Z., Mi, A.-Q., Jiang, Y.-Z., Wu, Y.-D.: Enantioselective direct aldol reactions catalyzed by l-prolinamide derivatives. Proc. Natl. Acad. Sci. 101(16), 5755–5760 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sakthivel, K., Notz, W., Bui, T., Barbas, C.F.: Amino acid catalyzed direct asymmetric aldol reactions: a bioorganic approach to catalytic asymmetric carbon−carbon bond-forming reactions. J. Am. Chem. Soc. 123(22), 5260–5267 (2001)

    Article  CAS  PubMed  Google Scholar 

  111. Guo, H.-M., Cun, L.-F., Gong, L.-Z., Mi, A.-Q., Jiang, Y.-Z.: Asymmetric direct aldol reaction catalyzed by an l-prolinamide derivative: considerable improvement of the catalytic efficiency in the ionic liquid. Chem. Commun. 11, 1450–1452 (2005)

    Article  CAS  Google Scholar 

  112. Tang, Z., Yang, Z.-H., Chen, X.-H., Cun, L.-F., Mi, A.-Q., Jiang, Y.-Z., Gong, L.-Z.: A highly efficient organocatalyst for direct aldol reactions of ketones with aldedydes. J. Am. Chem. Soc. 127(25), 9285–9289 (2005)

    Article  CAS  PubMed  Google Scholar 

  113. Saito, S., Yamamoto, H.: Design of acid−base catalysis for the asymmetric direct aldol reaction. Acc. Chem. Res. 37(8), 570–579 (2004)

    Article  CAS  PubMed  Google Scholar 

  114. Torii, H., Nakadai, M., Ishihara, K., Saito, S., Yamamoto, H.: Asymmetric direct aldol reaction assisted by water and a proline-derived tetrazole catalyst. Angew. Chemie Int. Ed. 43(15), 1983–1986 (2004)

    Article  CAS  Google Scholar 

  115. Raj, M., Vishnumaya Ginotra, S.K., Singh, V.K.: Highly enantioselective direct aldol reaction catalyzed by organic molecules. Org. Lett. 8(18), 4097–4099 (2006)

    Google Scholar 

  116. Rossiter, B.E., Swingle, N.M.: Asymmetric conjugate addition. Chem. Rev. 92(5), 771–806 (1992)

    Article  CAS  Google Scholar 

  117. Perlmutter, P.: Conjugate Addition Reactions in Organic Synthesis. Elsevier (2013)

    Google Scholar 

  118. Tsogoeva, S.B.: Recent advances in asymmetric organocatalytic 1, 4-conjugate additions. Eur. Org. Chem. 11, 1701–1716 (2007)

    Article  CAS  Google Scholar 

  119. Hermann, K., Wynberg, H.: Asymmetric induction in the Michael reaction. J. Org. Chem. 44(13), 2238–2244 (1979)

    Article  CAS  Google Scholar 

  120. Wynberg, H., Helder, R.: Asymmetric induction in the alkaloid-catalysed Michael reaction. Tetrahedron Lett. 16(46), 4057–4060 (1975)

    Article  Google Scholar 

  121. Yamada, S., Hiroi, K., Achiwa, K.: Asymmetric synthesis with amino acid I asymmetric induction in the alkylation of keto-enamine. Tetrahedron Lett. 10(48), 4233–4236 (1969)

    Article  Google Scholar 

  122. Seebach, D., Missbach, M., Calderari, G., Eberle, M.: [3+ 3]-carbocyclizations of nitroallylic esters and enamines with stereoselective formation of up to six new stereogenic centers. J. Am. Chem. Soc. 112(21), 7625–7638 (1990)

    Article  CAS  Google Scholar 

  123. Hechavarria Fonseca, M.T., List, B.: Catalytic asymmetric intramolecular Michael reaction of aldehydes. Angew. Chemie 116(30), 4048–4050 (2004)

    Article  Google Scholar 

  124. List, B., Pojarliev, P., Martin, H.J.: Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins. Org. Lett. 3(16), 2423–2425 (2001)

    Article  CAS  PubMed  Google Scholar 

  125. Seebach, D., Goliński, J.: Synthesis of open-chain 2, 3-disubstituted 4-nitroketones by diastereoselective Michael-addition of (E)-enamines to (E)-nitroolefins. A topological rule for C, C‐bond forming processes between prochiral centres. Preliminary communication. Helv. Chim. Acta 64(5), 1413–1423 (1981)

    Google Scholar 

  126. Blarer, S.J., Seebach, D.: Asymmetrische Michael-Additionen. Stereoselektive Alkylierungen Des (R)-und (S)-Enamins Aus Cyclohexanon Und 2-(Methoxymethyl) Pyrrolidin Durch Α-(Methoxycarbonyl) Zimtsäure-methylester. Chem. Ber. 116(6), 2250–2260 (1983)

    Google Scholar 

  127. Jelinek, R., Kolusheva, S.: Carbohydrate biosensors. Chem. Rev. 104(12), 5987–6016 (2004)

    Article  CAS  PubMed  Google Scholar 

  128. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2), 97–130 (1993)

    Article  CAS  PubMed  Google Scholar 

  129. Tiwari, V.K., Kumar, A., Schmidt, R.R.: Disaccharide-containing macrocycles by click chemistry and intramolecular glycosylation. Eur. J. Org. Chem. 15, 2945–2956 (2012)

    Article  CAS  Google Scholar 

  130. Bertozzi, C.R., Kiessling, L.L.: Chemical glycobiology. Science 291(5512), 2357–2364 (2001)

    Article  CAS  PubMed  Google Scholar 

  131. Galan, M.C., Benito-Alifonso, D., Watt, G.M.: Carbohydrate chemistry in drug discovery. Org. Biomol. Chem. 9(10), 3598–3610 (2011)

    Article  CAS  PubMed  Google Scholar 

  132. Marradi, M., Huang, X., Molinaro, A., Silipo, A., Penades, S., Roy, R., Schweizer, F., Vincent, S., Mulard, L., Rauter, A.P.: Carbohydrates in Drug Design and Discovery. Royal Society of Chemistry (2015)

    Google Scholar 

  133. Tiwari, V.K.: Carbohydrates in Drug Discovery and Development: Synthesis and Application. Elsevier (2020)

    Google Scholar 

  134. Laschat, S., Kunz, H.: Carbohydrates as chiral templates: diastereoselective synthesis of N-glycosyl-N-homoallylamines and beta.-amino acids from imines. J. Org. Chem. 56(20), 5883–5889 (1991)

    Google Scholar 

  135. Kunz, H., Rück, K.: Carbohydrates as chiral auxiliaries in stereoselective synthesis. New synthetic methods (90). Angew. Chemie Int. Ed. Eng. 32(3), 336–358 (1993)

    Google Scholar 

  136. Nicolaou, K.C., Mitchell, H.J.: Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew. Chemie Int. Ed. 4(9), 1576–1624 (2001)

    Article  Google Scholar 

  137. Blaser, H.U.: The chiral pool as a source of enantioselective catalysts and auxiliaries. Chem. Rev. 92(5), 935–952 (1992)

    Article  CAS  Google Scholar 

  138. Hultin, P.G., Earle, M.A., Sudharshan, M.: Synthetic studies with carbohydrate-derived chiral auxiliaries. Tetrahedron 53(44), 14823–14870 (1997)

    Article  CAS  Google Scholar 

  139. Dalko, P.I., Moisan, L.: Enantioselective organocatalysis. Angew. Chemie Int. Ed. 40(20), 3726–3748 (2001)

    Article  CAS  Google Scholar 

  140. Faisca Phillips, A.M.: Applications of carbohydrate-based organocatalysts in enantioselective synthesis. Eur. J. Org. Chem. 33, 7291–7303 (2014)

    Article  CAS  Google Scholar 

  141. Minuth, T., Boysen, M.M.K.: Bis (oxazolines) based on glycopyranosides-steric, configurational and conformational influences on stereoselectivity. Beils. J. Org. Chem. 6(1), 23 (2010)

    Google Scholar 

  142. Dalko, P.I., Moisan, L.: In the golden age of organocatalysis. Angew. Chemie Int. Ed. 43(39), 5138–5175 (2004)

    Article  CAS  Google Scholar 

  143. Shi, Y.: Organocatalytic asymmetric epoxidation of olefins by Chiral Ketones. Acc. Chem. Res. 37(8), 488–496 (2004)

    Article  CAS  PubMed  Google Scholar 

  144. Wong, O.A., Shi, Y.: Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by Chiral Ketones and iminium salts. Chem. Rev. 108(9), 3958–3987 (2008)

    Google Scholar 

  145. Mishra, A., Mishra, N.K., Tiwari, V.: Carbohydrate-based organocatalysts: recent developments and future perspectives. Curr. Org. Synth. 13(2), 176–219 (2016)

    Google Scholar 

  146. Wang, Z.-X., Tu, Y., Frohn, M., Zhang, J.-R., Shi, Y.: An efficient catalytic asymmetric epoxidation method. J. Am. Chem. Soc. 119(46), 11224–11235 (1997)

    Article  CAS  Google Scholar 

  147. Wang, Z.-X., Shi, Y.: A PH study on the chiral ketone catalyzed asymmetric epoxidation of hydroxyalkenes. J. Org. Chem. 63(9), 3099–3104 (1998)

    Article  CAS  Google Scholar 

  148. Wang, Z.-X., Cao, G.-A., Shi, Y.: Chiral ketone catalyzed highly chemo-and enantioselective epoxidation of conjugated enynes. J. Org. Chem. 64(20), 7646–7650 (1999)

    Article  CAS  Google Scholar 

  149. Cao, G.-A., Wang, Z.-X., Tu, Y., Shi, Y.: Chemo-and enantioselective epoxidation of enynes. Tetrahedron Lett. 39(25), 4425–4428 (1998)

    Article  CAS  Google Scholar 

  150. Lindström, U.M.: Stereoselective organic reactions in water. Chem. Rev. 102(8), 2751–2772 (2002)

    Article  PubMed  CAS  Google Scholar 

  151. Tsutsui, A., Takeda, H., Kimura, M., Fujimoto, T., Machinami, T.: Novel enantiocontrol system with aminoacyl derivatives of glucoside as enamine-based organocatalysts for aldol reaction in aqueous media. Tetrahedron Lett. 48(30), 5213–5217 (2007)

    Article  CAS  Google Scholar 

  152. Agarwal, J., Peddinti, R.K.: Highly efficient and solvent-free direct aldol reaction catalyzed by glucosamine-derived prolinamide. Tetrahedron: Asymmetry 21(15), 1906–1909 (2010)

    Google Scholar 

  153. Agarwal, J., Peddinti, R.K.: Synthesis and characterization of monosaccharide derivatives and application of sugar-based prolinamides in asymmetric synthesis. Eur. J. Org. Chem. 2012(32), 6390–6406 (2012)

    Article  CAS  Google Scholar 

  154. De Nisco, M., Pedatella, S., Bektaş, S., Nucci, A., Caputo, R.: D-glucosamine in a chimeric prolinamide organocatalyst for direct asymmetric aldol addition. Carbohydr. Res. 356, 273–277 (2012)

    Article  PubMed  CAS  Google Scholar 

  155. Kumar, T.P., Balaji, S.V.: Sugar amide-pyrrolidine catalyst for the asymmetric Michael addition of ketones to nitroolefins. Tetrahedron: Asymmetry 25(5), 473–477 (2014)

    Google Scholar 

  156. Wang, L., Liu, J., Miao, T., Zhou, W., Li, P., Ren, K., Zhang, X.: Sugar-based pyrrolidine as a highly enantioselective organocatalyst for asymmetric Michael addition of ketones to nitrostyrenes. Adv. Synth. Catal. 352, 2571–2578 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Tiwari .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, V.K., Kumar, A., Rajkhowa, S., Tripathi, G., Singh, A.K. (2022). Organocatalysis: A Versatile Tool for Asymmetric Green Organic Syntheses. In: Green Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-2734-8_7

Download citation

Publish with us

Policies and ethics

Navigation