Real-Time Detection of Tornado-Induced Ionospheric Disturbances by Stand-Alone GNSS Receiver

  • Chapter
  • First Online:
Extreme Natural Events

Abstract

Mesoscale atmospheric events, e.g. deep tropical convection, thunderstorms, tropical cyclones, tropospheric jet, typhoons and tornadoes, are generally associated with upward propagating gravity waves and intense variation in electric fields, which may disturb the upper atmosphere. Here, we present a compelling case of variation in the total electron content (TEC) in the ionosphere induced by tornados that occurred over the city of Oklahoma, United States of America. Observations from global navigation satellite system (GNSS) sites indicate a variation in total electron content of about 0.1–0.35 ± 0.024 TECU (1 TECU = 1016 electrons/m2) during the occurrence of tornadoes. The variation in TEC has directly correlated with the intensity of lightning and the severity of the convective system. The TEC anomaly propagated at an apparent speed of ~0.165 m/s. We argued that the rate of change of electron density in the ionosphere is linked with the generation of atmospheric gravity waves, along with the duration and amplitude of lightning, associated with the convective events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 83.19
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 103.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afraimovich, E.L., N.P. Perevalova, A.V. Plotnikov, and A.M. Uralov, 2001. The shock acoustic waves generated by the earthquakes. Advances in Space Research 19: 395–409.

    Google Scholar 

  • Blanc, E., T. Farges, A. Le Pichon, and P. Heinrich. 2014. Ten year observations of gravity waves from thunderstorms in western Africa. Journal of Geophysical Research: Atmospheres 119: 6409–6418.

    Article  Google Scholar 

  • Bowling, T., E. Calais, and J.S. Haase. 2013. Detection and modelling of the ionospheric perturbation caused by a Space Shuttle launch using a network of ground-based Global Positioning System stations. Geophysical Journal International 192: 1324–1331.

    Article  Google Scholar 

  • Cahyadi, M.N., and K. Heki. 2015. Coseismic ionospheric disturbance of the large strike-slip earthquakes in North Sumatra in 2012: Mw dependence of the disturbance amplitudes. Geophysical Journal International 200: 116–129.

    Article  Google Scholar 

  • Calais, E., J.B. Minster. 1995. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquakes. Geophysical research letter 22: 1045–1048.

    Article  Google Scholar 

  • Carrano, C., and Groves, K., 2009. Ionospheric Data Processing and Analysis, Workshop on Satellite Navigation Science and Technology for Africa, The Abdus Salam ICTP, Trieste, Italy.

    Google Scholar 

  • Catherine, J.K., M.S.M. Vijayan, U.B. SyedaRabiya, K. Shimna, V.K. Gahalaut, and D.S. Ramesh. 2015. Dichotomy in mode propagation of coseismicionospheric disturbance: Observations from 11 April 2012 Indian Ocean earthquake. Journal of Geophysical Research Space Physics 120: 3854–3867.

    Article  Google Scholar 

  • Catherine, J.K., D.U. Maheshwari, V.K. Gahalaut, P.N.S. Roy, P.K. Khan, and N. Puviarasan. 2016. Ionospheric disturbances triggered by the 25 April, 2015 M7.8 Gorkha earthquake, Nepal: Constraints from GPS TEC measurements. Journal of Asian Earth Sciences 133: 80–88.

    Article  Google Scholar 

  • Chou, M.Y., Charles C. H. Lin, Jia Yue, H.F. Tsai, Y.Y. Sun, J.Y. Liu, and C.H. Chen. 2017. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophysical Research Letters 44 (3): 1219–1226.

    Article  Google Scholar 

  • Coster, A. J., L. Goncharenko, S.-R. Zhang, P.J. Erickson, W. Rideout, and J. Vierinen. 2017. GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophysical Research Letters 44: 12041–12048.

    Google Scholar 

  • Dabas, R.S., J.B. Lal, T.R. Tyagi, and Y.V. Somayajulu. 1980. Variations in TEC and other parameters associated with magnetic storms. Indian Journal of Radio & Space Physics 9: 1–6.

    Google Scholar 

  • Dautermann, T., E. Calais, P. Lognonne, and G.S. Mattioli. 2009. Lithosphere–atmosphere–ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat. Geophysical Journal International 179: 1537–1546.

    Article  Google Scholar 

  • Ducic, V., J. Artru, and P. Lognonne. 2003. Ionospheric remote sensing of the Denali earthquake Rayleigh surface waves. Geophysical Research Letters 30(18): 1951.

    Google Scholar 

  • Forbes, J. M., Palo, S. E. and Zhang, X., 2000. Variability of the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics 62: 685–693.

    Google Scholar 

  • Gagan, J.P., A. Gerard, and J. Gordon. 2010. A historical and statistical comparison of “Tornado Alley” to “Dixie Alley.” National Weather Digest 34: 145–155.

    Google Scholar 

  • Gentile, L.C., W.C. Burke, and F.J. Rich. 2006. A global climatology for equatorial plasma bubbles in the topside ionosphere. Annales Geophysicae 24: 163–172.

    Article  Google Scholar 

  • Guha, A., B. Paul, M. Chakraborty, and B.K. De. 2016. Tropical cyclone effects on the equatorial ionosphere first result from the Indian sector. Journal of Geophysical Research Space Physics 121: 5764–5777.

    Article  Google Scholar 

  • Hagan, M.E., A. Maute, R.G. Roble, A.D. Richmond, T.J. Immel, and S.L. England. 2007. Connections between deep tropical clouds and the Earth’s ionosphere. Geophysical Research Letters 4: L20109.

    Article  Google Scholar 

  • Heki, K. 2011. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophysical Research Letters 38: L17312.

    Article  Google Scholar 

  • Heki, K., and J. **. 2005. Directivity and apparent velocity of the coseismicionospheric disturbances observed with a dense GPS array. Earth and Planetary Science Letters 236: 845–855.

    Article  Google Scholar 

  • Heki, K., Y. Otsuka, N. Choosakul, N. Hemmakorn, T. Komolmis, and T. Maruyama. 2006. Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances. Journal of Geophysical Research 111: B09313.

    Google Scholar 

  • Heki, K. 2020. Ionospheric disturbances related to earthquakes. In Advances in Ionospheric Research: Current Understanding and Challenges. Space Physics and Aeronomy, vol. 3, ed. C. Huang and G. Lu, 320. Wiley/American Geophysical Union, ISBN: 978-1-119-50755-0.

    Google Scholar 

  • Houze, R.A., D.C. Wilton, D.C. Smull 2007. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quarterly Journal of the Royal Meteorological Society 133: 1389–1411.

    Google Scholar 

  • Hung, R.J., and J. Kuo. 1978. Ionospheric observation of gravity waves associated with hurricane Eloise. Journal of Geophysics 45 (1): 67–80.

    Google Scholar 

  • Isaev, N.V., V.M. Sorokin, V.M. Chmyrev, O.N. Serebryakova, and A.K. Yaschenko. 2002a. Disturbance of the electric field in the ionosphere by sea storms and typhoons. Cosmic Research 40: 547–553.

    Article  Google Scholar 

  • Isaev, N.V., V.M. Sorokin, V.M. Chmyrev, O.N. Serebryakova, and O.Y. Ovcharenko. 2002a. Electric field enhancement in the ionosphere above tropical stormregion. In Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling, ed. M. Hayakawa and O. A. Molchanov, 313–315. TERRAPUB, Tokyo.

    Google Scholar 

  • Kelley, M.C. 1997. In situ ionospheric observations of severe weather-related gravity waves and associated small-scale plasma structures. Journal of Geophysical Research 102: 329–335.

    Article  Google Scholar 

  • Klobuchar, J.A. 1996. Ionospheric effects on GPS. Global Positioning System: Theory and Application 164: 485–515.

    Google Scholar 

  • Kumar, S., W. Chen, M. Chen, Z. Liu, and R.P. Singh. 2017. Thunderstorm-/lightning-induced ionospheric perturbation: An observation from equatorial and low-latitude stations around Hong Kong. Journal of Geophysical Research Space Physics 122: 9032–9044.

    Article  Google Scholar 

  • Kundu, B., D. Panda, V.K. Gahalaut, and J.K. Catherine. 2018. The August 21, 2017 American total solar eclipse through the eyes of GPS. Geophysical Journal International 214: 651–655.

    Article  Google Scholar 

  • Kundu, B., B. Senapati, A.I. Matsushita, and K. Heki. 2021. Atmospheric wave energy of the 2020 August 4 explosion in Beirut, Lebanon, from ionospheric disturbances. Scientific Report 11(1): 1–7.

    Google Scholar 

  • Lastovicka, J. 2006. Forcing of the ionosphere by waves from below. Journal of Atmospheric and Solar-Terrestrial Physics 68: 479–497.

    Article  Google Scholar 

  • Lay, E.H., X.-M. Shao, and C.S. Carrano. 2013. Variation in total electron content above large thunderstorms. Geophysical Research Letters 40: 1945–1949.

    Article  Google Scholar 

  • Lee, C.C., and B.W. Reinisch. 2006. Quiet-condition hmF2, NmF2, and B0 variations at Jicamarca and comparison with IRI-2001during solar maximum. Journal of Atmospheric and Solar-Terrestrial Physics 68: 2138–2146.

    Article  Google Scholar 

  • Lutgens, F.K., E.J. Tarbuck, and D. Tusa. 2001. The atmosphere, 484. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Mannucci, A.J., B.D. Wilson, D.N. Yuan, C.H. Ho, U.J. Lindqwister, and T.F. Runge. 1998. A global map** technique for GPS-derived ionospheric total electron content measurements. Radio Science 33: 565–582.

    Article  Google Scholar 

  • Ming, C.F., Z. Chen, and F. Roux. 2010. Analysis of gravity-waves produced by intense tropical cyclones. Annales Geophysicae 28: 531–547.

    Article  Google Scholar 

  • Nakashima, Y., K. Heki, A. Takeoa, M.N. Cahyadic, and A. Aditiya. 2015. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth and Planetary Science Letters 434: 112–116.

    Article  Google Scholar 

  • National Weather Service. 2018. https://www.weather.gov/oun/tornadodata-ok-monthlyannual.

  • Nishioka, M., T. Tsugawa, M. Kubota, and M. Ishii. 2013. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophysical Research Letters 40 (21): 5581–5586.

    Article  Google Scholar 

  • Occhipinti, G., P. Lognonné, E.A. Kherani, and H. Hébert. 2006. Three-dimensional waveform modelling of ionospheric signature induced by the 2004 Sumatra tsunamis. Geophysical Research Letters 33: L20104.

    Article  Google Scholar 

  • Panda, D., B. Senapati, B. Tyagi, and B. Kundu. 2019. Effects of Rayleigh-Taylor instability and ionospheric plasma bubbles on the global navigation satellite System signal. Journal of Asian Earth Sciences 170: 225–233.

    Article  Google Scholar 

  • Panda, S.K., S.S. Gedam, and G. Rajaram. 2013. GPS derived ionospheric TEC response to annular solar eclipse over Indian region on 15 January 2010. In International Conference on Space Science and Communication, 213–218.

    Google Scholar 

  • Park, Y., Y. Kwak, B. Ahn, Y. Park, and L. Cho. 2010. Ionospheric F2-layer semi-annual variation in middle latitude by solar activity. Journal of Astronomy and Space Sciences 27 (4): 319–327.

    Article  Google Scholar 

  • Park, J., D.A. Grejner-Brzezinska, and R. Von Frese. 2014. GPS discrimination of traveling ionospheric disturbances from underground nuclear explosions and earthquakes. NAVIGATION: Japan Institute of Navigation 62: 125–134.

    Google Scholar 

  • Perkins, F. 1973. Spread F and ionospheric currents. Journal of Geophysical Research 78 (1): 218–226.

    Article  Google Scholar 

  • Petersen, G.N., H. Bjornsson, and P. Arason. 2012.The impact of the atmosphere on the Eyjafjallajökull 2010 eruption plume. Journal of Geophysical Research 117: D00U07.

    Google Scholar 

  • Rideout, W., and A. Coster. 2006. Automated GPS processing for global total electron content data. GPS Solutions 10: 219–228.

    Article  Google Scholar 

  • Rolland, L.M., P. Lognonné, and H. Munekane. 2011a. Detection and modeling of Rayleigh wave induced patterns in the ionosphere. Journal of Geophysical Research 116: A05320.

    Article  Google Scholar 

  • Rolland, L.M., P. Lognonne, E. Astafyeva, E.A. Kherani, N. Kobayashi, M. Mann, and H. Munekane. 2011b. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space 63: 853–857.

    Article  Google Scholar 

  • Savastano, G., A. Komjathy, O. Verkhoglyadova, A. Mazzoni, M. Crespi, Y. Wei, and A.-J. Mannucci. 2017. Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: A preliminary feasibility demonstration. Scientific Report 7: 46607.

    Article  Google Scholar 

  • Senapati, B., J.D. Huba, B. Kundu, V.K. Gahalaut, D. Panda, S.K. Mondal, and J.K. Catherine. 2020. Change in total electron content during the 26 december 2019 solar eclipse: constraints from GNSS observations and comparison with Sami3 model results. Journal of Geophysical Research: Space Physics 125: e2020JA028230.

    Google Scholar 

  • Shao, X.-M., E. Lay, and A.R. Jacobson. 2012. On the behavior of return stroke current and the remotely detected electric field change waveform. Journal of Geophysical Research 117: D07105.

    Google Scholar 

  • Shao, X.-M., E. Lay, and A.R. Jacobson. 2013. Reduction of electrondensity in the night-time lower ionosphere in response to a thunderstorm. Nature Geoscience 6(1): 29–33.

    Google Scholar 

  • Sorokin, V.M., and G.P. Cherny. 1999. It is quite possible to monitor typhoons from outer space. Aerospace Courier 3: 84–87.

    Google Scholar 

  • Sorokin, V.M., N.V. Isaev, A.K. Yaschenko, V.M. Chmyrev, and M. Hayakawac. 2005. Strong DC electric field formation in the low latitude ionosphere over typhoons. Journal of Atmospheric and Solar-Terrestrial Physics 67: 1269–1279.

    Article  Google Scholar 

  • Sun, S.J., P.P. Ban, C. Chen, Z.W. Xu, and Z.W. Zhao. 2012. On the vertical drift of ionospheric F layer during disturbance time: Results from ionosondes. Journal of Geophysical Research 117: A01303.

    Article  Google Scholar 

  • Torrence, C., and G.P. Compo. 1998. A Practical Guide to Wavelet Analysis. http://paos.colorado.edu/research/wavelets/.

  • Tsugawa, T., Y. Otsuka, A.J. Coster, and A. Saito. 2007. Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophysical Research Letters 34: L22101.

    Google Scholar 

  • **ao, Z., S.G. **ao, and Y.Q. Hao. 2007. Morphological features of ionospheric response to typhoon. Journal of Geophysical Research 112: A04304.

    Article  Google Scholar 

  • Yang, Y.-M., A. Komjathy, R.B. Langley, P. Vergados, M.D. Butala, and A.J. Mannucci. 2014. The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements. Radio Science 49: 341–350.

    Article  Google Scholar 

  • Zhang, K., W.J. Randel, and R. Fu. 2017. Relationships between outgoing longwave radiation and diabatic heating in reanalyses. Climate Dynamics 49 (7): 2911–2929.

    Article  Google Scholar 

Download references

Acknowledgements

Geodetic data from the Oklahoma region are maintained by the Earth Scope Plate Boundary Observatory (PBO), available at UNAVCO (ftp://data-out.unavco.org/pub/rinex/). All data supporting the conclusions of this paper are presented in the text and figures. DP and BS are supported by NITR Research Fellowship. Some of the figures were plotted using Generic Map** Tools. The TEC processing of RINEX datasets have been performed using software GPS-TEC program, Version 2.9.5 (http://seemala.blogspot.com/), developed by Gopi Krishna Seemala, Indian Institute of Geomagnetism (IIG). We thank the editor and anonymous reviewer for their constructive comments, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Centre for Science & Technol. of the, Non-aligned and Other Devel. Countries

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senapati, B., Panda, D., Kundu, B., Tyagi, B. (2022). Real-Time Detection of Tornado-Induced Ionospheric Disturbances by Stand-Alone GNSS Receiver. In: Unnikrishnan, A., Tangang, F., Durrheim, R.J. (eds) Extreme Natural Events. Springer, Singapore. https://doi.org/10.1007/978-981-19-2511-5_8

Download citation

Publish with us

Policies and ethics

Navigation