Perceptual Quality Evaluation of Corrupted Industrial Images

  • Conference paper
  • First Online:
Digital TV and Wireless Multimedia Communications (IFTC 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1560))

  • 704 Accesses

Abstract

In recent years, computer vision applied in industrial application scenarios has been attracting attention. A lot of work has been made to present approaches based on visual perception, ensuring the safety during the processes of industrial production. However, much less effort has been done to assess the perceptual quality of corrupted industrial images. In this paper, we construct an Industrial Scene Image Database (ISID), which contains 3000 distorted images generated through applying different levels of distortion types to each of the 50 source images. Then, the subjective experiment is carried out to gather the subjective scores in a well-controlled laboratory environment. Finally, we perform comparison experiments on ISID database to investigate the performance of some objective image quality assessment algorithms. The experimental results show that the state-of-the-art image quality assessment methods have difficulty in predicting the quality of images that contain multiple distortion types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gu, K., Zhang, Y., Qiao, J.: Ensemble meta-learning for few-shot soot density recognition. IEEE Trans. Industr. Inf. 17(3), 2261–2270 (2021)

    Article  Google Scholar 

  2. Gu, K., **a, Z., Qiao, J., Lin, W.: Deep dual-channel neural network for image-based smoke detection. IEEE Trans. Multimed. 22(2), 311–323 (2020)

    Article  Google Scholar 

  3. Li, L., Wang, G., Cormack, L., Bovik, A.C.: Efficient and secure image communication system based on compressed sensing for IoT monitoring applications. IEEE Trans. Multimed. 22(1), 82–95 (2020)

    Article  Google Scholar 

  4. de Araujo, P.R.M., Lins, R.G.: Computer vision system for workpiece referencing in three-axis machining centers. Int. J. Adv. Manuf. Technol. 106, 2007–2020 (2020)

    Article  Google Scholar 

  5. Kessler, M., Siewerdsen, J., Sonke, J.: Tu-C (SAM)-BRC-01: multimodality image acquisition, processing and display for guiding and adapting radiation therapy. Med. Phys. 38(6), 3751 (2011)

    Article  Google Scholar 

  6. Gu, K., Tao, D., Qiao, J., Lin, W.: Learning a no-reference quality assessment model of enhanced images with big data. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1301–1313 (2018)

    Article  Google Scholar 

  7. Gu, K., Zhai, G., Lin, W., Liu, M.: The analysis of image contrast: from quality assessment to automatic enhancement. IEEE Trans. Cybern. 46(1), 284–297 (2016)

    Article  Google Scholar 

  8. Min, X., Ma, K., Gu, K., Zhai, G., Wang, Z., Lin, W.: Unified blind quality assessment of compressed natural, graphic, and screen content images. IEEE Trans. Image Process. 26(11), 5462–5474 (2017)

    Article  MathSciNet  Google Scholar 

  9. Min, X., Zhai, G., Gu, K., Yang, X., Guan, X.: Objective quality evaluation of dehazed images. IEEE Trans. Intell. Transp. Syst. 20(8), 2879–2892 (2019)

    Article  Google Scholar 

  10. Min, X., et al.: Quality evaluation of image dehazing methods using synthetic hazy images. IEEE Trans. Multimed. 21(9), 2319–2333 (2019)

    Article  Google Scholar 

  11. Gu, K., Zhai, G., Yang, X., Zhang, W.: Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Trans. Broadcast. 60(3), 555–567 (2014)

    Article  Google Scholar 

  12. Gu, K., Liu, M., Zhai, G., Yang, X., Zhang, W.: Quality assessment considering viewing distance and image resolution. IEEE Trans. Broadcast. 61(3), 520–531 (2015)

    Article  Google Scholar 

  13. Gu, K., Wang, S., Zhai, G., Ma, S., Yang, X., Zhang, W.: Content-weighted mean-squared error for quality assessment of compressed images. Signal Image Video Process. 10(5), 803–810 (2015). https://doi.org/10.1007/s11760-015-0818-9

    Article  Google Scholar 

  14. Di Claudio, E.D., Jacovitti, G.: A detail-based method for linear full reference image quality prediction. IEEE Trans. Image Process. 27(1), 179–193 (2018)

    Article  MathSciNet  Google Scholar 

  15. Gu, K., Zhai, G., Yang, X., Zhang, W.: A new reduced-reference image quality assessment using structural degradation model. In: Proceeding IEEE International Symposium on Circuits and Systems, pp. 1095–1098, May 2013

    Google Scholar 

  16. Liu, M., Gu, K., Zhai, G., LeCallet, P., Zhang, W.: Perceptual reduced-reference visual quality assessment for contrast alteration. IEEE Trans. Broadcast. 63(1), 71–81 (2017)

    Article  Google Scholar 

  17. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  18. Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimed. 17(1), 50–63 (2015)

    Article  Google Scholar 

  19. Min, X., Gu, K., Zhai, G., Liu, J., Yang, X., Chen, C.: Blind quality assessment based on pseudo-reference image. IEEE Trans. Multimed. 20(8), 2049–2062 (2018)

    Article  Google Scholar 

  20. Min, X., Zhai, G., Gu, K., Liu, Y., Yang, X.: Blind image quality estimation via distortion aggravation. IEEE Trans. Broadcast. 64(2), 508–517 (2018)

    Article  Google Scholar 

  21. Sun, W., Min, X., Zhai, G., Gu, K., Duan, H., Ma, S.: MC360IQA: a multi-channel CNN for blind 360-degree image quality assessment. IEEE J. Sel. Top. Signal Process. 14(1), 64–77 (2020)

    Article  Google Scholar 

  22. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  25. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  26. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  27. Gu, K., Zhai, G., Yang, X., Zhang, W.: No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans. Cybern. 47(12), 4559–4565 (2017)

    Article  Google Scholar 

  28. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–3231 (2015)

    Article  MathSciNet  Google Scholar 

  29. ITU: Methodology for the subjective assessment of the quality of television pictures. Recommendation, International Telecommunication Union/ITU Ratio communication Sector (2009)

    Google Scholar 

  30. Li, L., Zhou, Y., Lin, W., Wu, J., Zhang, X., Chen, B.: No-reference quality assessment of deblocked images. Neurocomputing 177, 572–584 (2016)

    Article  Google Scholar 

  31. Final report from the video quality experts group on the validation of objective models of video quality assessment VQEG, March 2000. http://www.vqeg.org/

  32. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Proceeding 37th Asilomar Conference on Signals, vol. 2, pp. 1398–1402, November 2003

    Google Scholar 

  33. Upadhyaya, V., Salim, M.: Compressive sensing based computed tomography Imaging: an effective approach for COVID-19 detection. Int. J. Wavelets Multiresolut. Inf. Process. 19, 2150014 (2021)

    Article  Google Scholar 

  34. Liu, A., Lin, W., Narwaria, M.: Image quality assessment based on gradient similarity. IEEE Trans. Image Process. 21(4), 1500–1512 (2012)

    Article  MathSciNet  Google Scholar 

  35. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014)

    Article  MathSciNet  Google Scholar 

  36. Gu, K., Zhai, G., Yang, X., Zhang, W.: An efficient color image quality metric with local-tuned-global model. In: Proceeding IEEE International Conference on Image Processing, pp. 506–510, October 2014

    Google Scholar 

  37. Zhang, L., Shen, Y., Li, H.: VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

    Article  MathSciNet  Google Scholar 

  38. Appina, B., Dendi, S.V.R., Manasa, K., Channappayya, S.S., Bovik, A.C.: Study of subjective quality and objective blind quality prediction of stereoscopic videos. IEEE Trans. Image Process. 28(10), 5027–5040 (2019)

    Article  MathSciNet  Google Scholar 

  39. Gu, K., Li, L., Lu, H., Min, X., Lin, W.: A fast reliable image quality predictor by fusing micro- and macro- structures. IEEE Trans. Industr. Inf. 64(5), 3903–3912 (2017)

    Article  Google Scholar 

  40. Gu, K., Zhou, J., Qiao, J., Zhai, G., Lin, W., Bovik, A.C.: No-reference quality assessment of screen content pictures. IEEE Trans. Image Process. 26(8), 4005–4018 (2017)

    Article  MathSciNet  Google Scholar 

  41. Ospina-Borras, J.E., Benitez-Restrepo, H.D.: Non-reference quality assessment of infrared images reconstructed by compressive sensing. In: Proceeding of SPIE the International Society for Optical Engineering, pp. 9396 (2015)

    Google Scholar 

  42. Friston, K., Kilner, J., Harrison, L.: A free energy principle for the brain. J. Physiol.-Paris 100, 70–87 (2006)

    Article  Google Scholar 

  43. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)

    Article  Google Scholar 

  44. Zhu, W., et al.: Multi-channel decomposition in Tandem with free-energy principle for reduced-reference image quality assessment. IEEE Trans. Multimed. 21(9), 2334–2346 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, Y., Peng, C., Liu, J., Zhou, C., Liu, H. (2022). Perceptual Quality Evaluation of Corrupted Industrial Images. In: Zhai, G., Zhou, J., Yang, H., An, P., Yang, X. (eds) Digital TV and Wireless Multimedia Communications. IFTC 2021. Communications in Computer and Information Science, vol 1560. Springer, Singapore. https://doi.org/10.1007/978-981-19-2266-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2266-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2265-7

  • Online ISBN: 978-981-19-2266-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation