Technological Advancements in the Production of Green Diesel from Biomass

  • Chapter
  • First Online:
Green Diesel: An Alternative to Biodiesel and Petrodiesel

Abstract

Diesel-range hydrocarbons derived from biomass have similar chemical compositions and physicochemical properties with petroleum-derived diesel, known as green diesel. Green diesel also meets the American Society for Testing and Materials (ASTM) specification ASTM D975. Green diesel is thus compatible with existing petroleum pipelines, storage tanks, fueling stations, and diesel engines. Currently, green diesel is produced from non-edible tree-borne oils and lignocellulose biomass. Hydroprocessing of oils and fats, biomass-to-liquid, and a combination of fast pyrolysis and hydrodeoxygenation of bio-oil, are some of the thermochemical processes used to produce green diesel. While commercial technologies are available for producing green diesel from oils and fats, these technologies are suffering from the challenges of the dearth and high cost of feedstock. On the contrary, lignocellulosic biomass is abundant and inexpensive. However, the technologies for converting lignocellulosic biomass to green diesel are in the develo** stage. This chapter presents the existing and upcoming hydropyrolysis technologies for converting lignocellulosic biomass to green diesel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 48.14
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 60.12
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 84.39
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CFHP:

Catalytic fast hydropyrolysis

CFP:

Catalytic fast pyrolysis

FFA:

Free fatty acids

F-TS:

Fischer–Tropsch synthesis

HDO:

Hydrodeoxygenation

LHSV:

Liquid hourly space velocity

MMT:

Million metric tons

WHSV:

Weight hourly space velocity

References

  1. Abhari R, Tomlinson HL, Roth G (2013) Biorenewable naphtha. US8558042B2

    Google Scholar 

  2. Ashraful AM, Masjuki HH, Kalam MA et al (2014) Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: a review. Energy Convers Manag 80:202–228. https://doi.org/10.1016/j.enconman.2014.01.037

    Article  Google Scholar 

  3. AsianDownstreamInsights (2021) BioFlux®: The solution for challenges of renewable feeds. https://asiandownstreaminsights.com/petrochemicals/bioflux-the-solution-for-challenges-of-renewable-feeds/. Acessed 21 Dec 2021

  4. Axens (2021) Renewable Diesel and Jet. https://www.axens.net/markets/renewable-fuels-bio-based-chemicals/renewable-diesel-and-jet. Acessed 21 Dec 2021

  5. Banković-Ilić IB, Stojković IJ, Stamenković OS et al (2014) Waste animal fats as feedstocks for biodiesel production. Renew Sustain Energy Rev 32:238–254. https://doi.org/10.1016/J.RSER.2014.01.038

    Article  Google Scholar 

  6. Bezergianni S, Dimitriadis A, Chrysikou LP (2014) Quality and sustainability comparison of one-vs. Two-step catalytic hydroprocessing of waste cooking oil. Fuel 118:300–307. https://doi.org/10.1016/j.fuel.2013.10.078

    Article  Google Scholar 

  7. Bezergianni S, Voutetakis S, Kalogianni A (2009) Catalytic hydrocracking of fresh and used cooking oil. Ind Eng Chem Res 48:8402–8406. https://doi.org/10.1021/ie900445m

    Article  Google Scholar 

  8. Biodiesel Magazine (2021) Renewable Diesel’s Rising Tide. http://www.biodieselmagazine.com/articles/2517318/renewable-diesels-rising-tide. Acessed 21 Dec 2021

  9. Brady JP, Tom N. Kalnes, Marker TL (2012) US 8198492 B2: production of transportation fuel from renewable feedstocks

    Google Scholar 

  10. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  11. Chapus T, Dupassieux N (2011) US 7880043 B2: method of converting feedstocks coming from renewable sources into high-quality gas-oil fuel bases

    Google Scholar 

  12. Chen SY, Teerananont N, Sonthisawate T et al (2015) A cost-effective acid degumming process produces high-quality Jatropha oil in tropical monsoon climates. Eur J Lipid Sci Technol 117:1079–1087. https://doi.org/10.1002/ejlt.201400293

    Article  Google Scholar 

  13. Cross P, Wang K, Weiner J et al (2020) Reactive catalytic fast pyrolysis of biomass over molybdenum oxide catalysts: a parametric study. Energy Fuels 34:4678–4684. https://doi.org/10.1021/acs.energyfuels.0c00320

    Article  Google Scholar 

  14. Dayton DC, Hlebak J, Carpenter JR et al (2016) Biomass hydropyrolysis in a fluidized bed reactor. Energy Fuels 30:4879–4887. https://doi.org/10.1021/acs.energyfuels.6b00373

    Article  Google Scholar 

  15. Digital Refining (2020) Versatile performance with bioFlux renewable diesel (ERTC). https://www.digitalrefining.com/article/1002540/versatile-performance-with-bioflux-renewable-diesel-ert#.Ybcty5FByUk. Acessed 21 Dec 2021

  16. Dorez G, Ferry L, Sonnier R et al (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrolysis 107:323–331. https://doi.org/10.1016/j.jaap.2014.03.017

    Article  Google Scholar 

  17. Douvartzides SL, Charisiou ND, Papageridis KN et al (2019) Green diesel: biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies 12:1–42. https://doi.org/10.3390/en12050809

    Article  Google Scholar 

  18. Duan J, Han J, Sun H, Chen P, Lou H, Zheng X (2012) Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catal Commun 17:76–80. https://doi.org/10.1016/j.catcom.2011.10.009

    Article  Google Scholar 

  19. Egeberg RG, Knudsen KG, Blom NJ et al (2014) Hydroconversion process and catalyst. US 8912375:B2

    Google Scholar 

  20. EIA (2021) Consumption & efficiency. https://www.eia.gov/consumption/. Acessed 22 Dec 2021

  21. EIA (2019) The strait of hormuz is the world’s most important oil transit chokepoint. https://www.eia.gov/todayinenergy/detail.php?id=39932. Acessed 22 Dec 2021

  22. EREC Rnewable energy scenario to 2040.

    Google Scholar 

  23. Eschenbacher A, Fennell P, Jensen AD (2021) A review of recent research on catalytic biomass pyrolysis and low-pressure hydropyrolysis. Energy Fuels 35:18333–18369. https://doi.org/10.1021/acs.energyfuels.1c02793

    Article  Google Scholar 

  24. FAO Codex Standard for Fats and Oils from Animal Sources. https://www.fao.org/3/y2774e/y2774e05.htm. Acessed 22 Dec 2021

  25. Friedlingstein P, O’Sullivan M, Jones M et al (2020) Global carbon budget 2020. Earth Syst Sci Data Discuss 1–3. https://doi.org/10.5194/essd-2020-286

  26. Fssai Repurpose Used Cooking Oil

    Google Scholar 

  27. García-Dávila J, Ocaranza-Sánchez E, Rojas-López M et al (2014) Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production. Fuel 135:380–386. https://doi.org/10.1016/j.fuel.2014.07.006

    Article  Google Scholar 

  28. Ghadge SV, Raheman H (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenerg 28:601–605. https://doi.org/10.1016/j.biombioe.2004.11.009

    Article  Google Scholar 

  29. Green Car Congress (2020) Grön fuels selects Haldor Topsoe technologies for multi-billion-dollar renewable fuels complex in Louisiana. https://www.greencarcongress.com/2020/12/20201215-topsoe.html. Acessed 22.12.2021

  30. Grubb M (2019) HydroFlex TM—the solution to production of renewable jet fuel and diesel. Present. Adv. Biofuels Conf. Svebio 2019

    Google Scholar 

  31. Haldor-Topse H2bridgeTM. https://renewables.topsoe.com/h2bridge. Acessed 22 Dec 2021

  32. Haldor-Topsoe (2020a) HollyFrontier opts for Topsoe’s HydroFlexTM solution to reduce cost of compliance with renewable fuels blending requirements. https://blog.topsoe.com/hollyfrontier-opts-for-topsoes-hydroflex-solution-to-reduce-cost-of-compliance-with-renewable-fuels-blending-requirements. Acessed 22.12.2021

  33. Haldor-Topsoe (2020b) Grön Fuels, LLC select Haldor Topsoe’s HydroFlexTM renewable fuels and H2bridgeTM bio-hydrogen technologies with bio-CCS option for a multi-billion low carbon intensity complex in Louisiana. https://blog.topsoe.com/grön-fuels-llc-select-haldor-topsoes-hydroflex-renewable-fuels-and-h2bridge-bio-hydrogen-technologies-with-bio-ccs-option-for-a-multi-billion-low-carbon-intensit-1607702386153. Acessed 22.12.2021

  34. Haldor-Topsoe (2021a) CVR Energy, Inc. subsidiary selects Haldor Topsoe’s HydroFlexTM technology for revamp to renewable diesel production. https://blog.topsoe.com/cvr-energy-inc.-subsidiary-selects-haldor-topsoes-hydroflex-technology-for-revamp-to-renewable-diesel-production. Acessed 22 Dec 2021

  35. Haldor-Topsoe (2021b) Haldor Topsoe HydroFlexTM technology results in successful test run at Marathon Petroleum Corp. facility producing 100% renewable diesel. https://blog.topsoe.com/marathon-petroleum-corporation-confirms-successful-test-run-for-us-refinery-producing-100-renewable-diesel-based-on-topsoes-hydroflex-technology. Acessed 22 Dec 2021

  36. Haldor-Topsoe (2021c) Topsoe HydroFlexTM being used in renewable diesel production at Phillips 66 refinery. https://blog.topsoe.com/phillips-66-confirms-start-up-of-renewable-diesel-production-using-topsoe-hydroflex. Acessed 22 Dec 2021

  37. Harnos S, Onyestyák G, Kalló D (2012) Hydrocarbons from sunflower oil over partly reduced catalysts. React Kinet Mech Catal 106:99–111. https://doi.org/10.1007/s11144-012-0424-6

    Article  Google Scholar 

  38. Hung N Van, Maguyon-detras MC, Migo MV, et al (2020) Rice straw overview: availability, properties, and management practices. In: Sustainable Rice Straw Management, pp 1–13

    Google Scholar 

  39. IEA (2021) World energy. https://www.iea.org/world. Acessed 22 Dec 2021

  40. IEA (2020) Primary energy data: India. https://www.eia.gov/international/analysis/country/IND. Acessed 22 Dec 2021

  41. IRENA (2014) Global bioenergy supply and demand projections: a working paper for REmap 2030

    Google Scholar 

  42. Jacob GA, Prabhakaran SPS, Swaminathan G et al (2022) Thermal kinetic analysis of mustard biomass with equiatomic iron–nickel catalyst and its predictive modeling. Chemosphere 286. https://doi.org/10.1016/j.chemosphere.2021.131901

  43. Kaewmeesri R, Srifa A, Itthibenchapong V et al (2015) Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: effect of water and free fatty acid content. Energy Fuels 29:833–840. https://doi.org/10.1021/ef5023362

    Article  Google Scholar 

  44. Kalnes TN, Marker T, Shonnard DR, et al (2008) Green diesel production by hydrorefining renewable feedstocks. Biofuels Technol, 7–11

    Google Scholar 

  45. Kandel K, Anderegg JW, Nelson NC et al (2014) Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. J Catal 314:142–148. https://doi.org/10.1016/j.jcat.2014.04.009

    Article  Google Scholar 

  46. Kim SK, Han JY, Lee HS et al (2014) Production of renewable diesel via catalytic deoxygenation of natural triglycerides: comprehensive understanding of reaction intermediates and hydrocarbons. Appl Energy 116:199–205. https://doi.org/10.1016/j.apenergy.2013.11.062

    Article  Google Scholar 

  47. Kovács S, Kasza T, Thernesz A et al (2011) Fuel production by hydrotreating of triglycerides on NiMo/Al2O3/F catalyst. Chem Eng J 176–177:237–243. https://doi.org/10.1016/j.cej.2011.05.110

    Article  Google Scholar 

  48. Krár M, Kovács S, Kalló D et al (2010) Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst. Bioresour Technol 101:9287–9293. https://doi.org/10.1016/j.biortech.2010.06.107

    Article  Google Scholar 

  49. Kruger JS, Knoshaug EP, Dong T et al (2021) Catalytic hydroprocessing of single-cell oils to hydrocarbon fuels: converting microbial lipids to fuels is a promising approach to replace fossil fuels. Johnson Matthey Technol Rev 65:227–246. https://doi.org/10.1595/205651321x16013966874707

    Article  Google Scholar 

  50. Kubička D, Kaluža L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A Gen 372:199–208. https://doi.org/10.1016/j.apcata.2009.10.034

    Article  Google Scholar 

  51. Kumar P, Maity SK, Shee D (2019) Role of NiMo alloy and Ni species in the performance of NiMo/alumina catalysts for hydrodeoxygenation of stearic acid: a kinetic study. ACS Omega 4:2833–2843. https://doi.org/10.1021/acsomega.8b03592

    Article  Google Scholar 

  52. Kumar P, Yenumala SR, Maity SK et al (2014) Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: effects of supports. Appl Catal A Gen 471:28–38. https://doi.org/10.1016/j.apcata.2013.11.021

    Article  Google Scholar 

  53. Kumar R, Rana BS, Tiwari R et al (2010) Hydroprocessing of jatropha oil and its mixtures with gas oil. Green Chem 12:2232–2239. https://doi.org/10.1039/c0gc00204f

    Article  Google Scholar 

  54. Li T, Cheng J, Huang R, Zhou J et al (2015) Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst. Bioresour Technol 197:289–294. https://doi.org/10.1016/j.biortech.2015.08.115

    Article  Google Scholar 

  55. Liu KT, Gao S, Chung TW, Huang C, ming, et al (2012) Effect of process conditions on the removal of phospholipids from Jatropha curcas oil during the degumming process. Chem Eng Res Des 90:1381–1386. https://doi.org/10.1016/j.cherd.2012.01.002

    Article  Google Scholar 

  56. Liu Y, Sotelo-Boyás R, Murata K et al (2011) Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids. Energy Fuels 25:4675–4685. https://doi.org/10.1021/ef200889e

    Article  Google Scholar 

  57. Lv PM, **ong ZH, Chang J, et al (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour Technol 95:95–101 . https://doi.org/10.1016/j.biortech.2004.02.003

  58. Mailaram S, Maity SK (2019) Techno-economic evaluation of two alternative processes for production of green diesel from karanja oil: a pinch analysis approach. J Renew Sustain Energy 11. https://doi.org/10.1063/1.5078567

  59. Maity S, Gayen K, Bhowmick T (2022) Hydrocarbon biorefinery: sustainable processing of biomass for hydrocarbon biofuels. Elsevier

    Google Scholar 

  60. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew Sustain Energy Rev 43:1427–1445. https://doi.org/10.1016/j.rser.2014.08.075

    Article  Google Scholar 

  61. Maniatis K (2019) 2nd EU-INDIA conference on advanced biofuels

    Google Scholar 

  62. Michael D. Ackerson, Byars MS (2017) Hydroprocessing method with high liquid mass flux. US 2017/0037325 A1

    Google Scholar 

  63. MNRE (2018) National policy on biofuels.

    Google Scholar 

  64. Montero G, Coronado MA, Torres R et al (2016) Higher heating value determination of wheat straw from Baja California, Mexico. Energy 109:612–619. https://doi.org/10.1016/J.ENERGY.2016.05.011

    Article  Google Scholar 

  65. MoPNG (2020) Energizing India’s Progress

    Google Scholar 

  66. MYLLYOJA J, NURMI P, KANERVO, TOPPINEN, MAKKONEN, KETTUNEN (2020) Process for the production of renewable base oil, diesel and naphtha. US 2020/0181504 A1

    Google Scholar 

  67. Neste (2020) Neste Renewable Diesel Handbook

    Google Scholar 

  68. NESTE (2015) High performance from NEXBTL renewable diesel

    Google Scholar 

  69. NEXT Renewable fuels (2021) Frequently asked questions. https://nextrenewables.com/faq/. Acessed 22 Dec 2021

  70. Özogul Y, Özogul F, Çi˙çek E, et al (2009) Fat content and fatty acid compositions of 34 marine water fish species from the mediterranean sea. Int J Food Sci Nutr 60:464–475. https://doi.org/10.1080/09637480701838175

    Article  Google Scholar 

  71. Paggio A Del (2019) Shell in advanced biofuels

    Google Scholar 

  72. Pekka K (2010) Integrated process for producing desel fuel from biological material and products, uses and equipment relating to said process. US 2010/0317903 A1

    Google Scholar 

  73. Peng B, Yao Y, Zhao C et al (2012) Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew Chemie Int Ed 51:2072–2075. https://doi.org/10.1002/anie.201106243

    Article  Google Scholar 

  74. Pyl SP, Schietekat CM, Reyniers MF et al (2011) Biomass to olefins: cracking of renewable naphtha. Chem Eng J 176–177:178–187. https://doi.org/10.1016/j.cej.2011.04.062

    Article  Google Scholar 

  75. Ray A, Anumakonda A (2011) Production of green liquid hydrocarbon fuels. In: Biofuels. Elsevier, pp 587–608

    Google Scholar 

  76. Ray A, Sinha AK, Atray N, Kumar S (2019) Converting indigenous waste carbon sources to useful products. Spec issue Environ 205:204

    Google Scholar 

  77. Renewable Energy Group (2019) REG renewable diesel fact sheet

    Google Scholar 

  78. Renewable Energy Group (2021) Geismar Biorefinery. https://www.regi.com/find-fuel/production-facilities/geismar. Acessed 22 Dec 2021

  79. Resende FLP (2016) Recent advances on fast hydropyrolysis of biomass. Catal Today 269:148–155. https://doi.org/10.1016/j.cattod.2016.01.004

    Article  Google Scholar 

  80. Roberts M, Marker TL (2012) Biomass to gasoline and diesel using integrated hydropyrolysis and hydroconversion

    Google Scholar 

  81. Sánchez M, Avhad MR, Marchetti JM et al (2016) Jojoba oil: a state of the art review and future prospects. Energy Convers Manag 129:293–304. https://doi.org/10.1016/j.enconman.2016.10.038

    Article  Google Scholar 

  82. Scharff Y, Asteris D, Fédou S (2013) Catalyst technology for biofuel production: conversion of renewable lipids into biojet and biodiesel. OCL—oilseeds fats, crop lipids 20:2–5. https://doi.org/10.1051/ocl/2013023

    Article  Google Scholar 

  83. Şensöz S, Kaynar İ (2006) Bio-oil production from soybean (Glycine max L.); fuel properties of Bio-oil. Ind Crops Prod 23:99–105. https://doi.org/10.1016/j.indcrop.2005.04.005

    Article  Google Scholar 

  84. Šimáček P, Kubička D, Šebor G et al (2010) Fuel properties of hydroprocessed rapeseed oil. Fuel 89:611–615. https://doi.org/10.1016/j.fuel.2009.09.017

    Article  Google Scholar 

  85. Sotelo-boy R, Liu Y, Minowa T (2011) Renewable diesel production from the hydrotreating of rapeseed oil with Pt / zeolite and NiMo/Al2O3 catalysts. Ind Eng Chem Res 50:2791–2799. https://doi.org/10.1021/ie100824d

    Article  Google Scholar 

  86. Statista (2021a) Consumption volume of petroleum products in India from financial year 2012 to 2020, with an estimate for 2021. https://www.statista.com/statistics/715241/india-consumption-volume-of-petroleum-products/. Acessed 22 Dec 2021

  87. Statista (2021b) Leading biodiesel producers worldwide in 2019, by country. https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/. Acessed 22 Dec 2021

  88. Stummann MZ, Hansen AB, Hansen LP et al (2019a) Catalytic hydropyrolysis of biomass using molybdenum sulfide based catalyst. Effect of Promoters. Energy and Fuels 33:1302–1313. https://doi.org/10.1021/acs.energyfuels.8b04191

    Article  Google Scholar 

  89. Stummann MZ, Høj M, Hansen AB et al (2019b) New insights into the effect of pressure on catalytic hydropyrolysis of biomass. Fuel Process Technol 193:392–403. https://doi.org/10.1016/j.fuproc.2019.05.037

    Article  Google Scholar 

  90. Stummann MZ, Høj M, Schandel CB et al (2018) Hydrogen assisted catalytic biomass pyrolysis. Effect of temperature and pressure. Biomass Bioenerg 115:97–107. https://doi.org/10.1016/j.biombioe.2018.04.012

    Article  Google Scholar 

  91. Swami SB, Thakor NJ, Haldankar PM et al (2012) Jackfruit and its many functional components as related to human health: a review. Compr Rev Food Sci Food Saf 11:565–576. https://doi.org/10.1111/j.1541-4337.2012.00210.x

    Article  Google Scholar 

  92. Takase M, Zhao T, Zhang M et al (2015) An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sustain Energy Rev 43:495–520. https://doi.org/10.1016/j.rser.2014.11.049

    Article  Google Scholar 

  93. TheDigest (2017) The renewing of Nevada renewable fuels and the rise of Ryze renewables. https://www.biofuelsdigest.com/bdigest/2017/08/03/the-renewing-of-nevada-renewable-fuels-and-the-the-rise-of-ryze-renewables/. Acessed 22 Dec 2021

  94. Toba M, Abe Y, Kuramochi H et al (2011) Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catal Today 164:533–537. https://doi.org/10.1016/j.cattod.2010.11.049

    Article  Google Scholar 

  95. United Nations climate change (2015) Paris agreement

    Google Scholar 

  96. Verdier S, Alkilde OF, Chopra R, Gabrielsen J, Grubb M (2018) Hydroprocessing of renewable feedstocks—challenges and solutions. Topsoe white Pap

    Google Scholar 

  97. Wang K, Dayton DC, Peters JE et al (2017) Reactive catalytic fast pyrolysis of biomass to produce high-quality bio-crude. Green Chem 19:3243–3251. https://doi.org/10.1039/c7gc01088e

    Article  Google Scholar 

  98. World Bioenergy Association (2019) Global bioenergy statistics 2019

    Google Scholar 

  99. WorldResourceInstitute (2019) Six ways the climate changed over the past decade. https://www.wri.org/insights/6-ways-climate-changed-over-past-decade. Acessed 22 Dec 2021

  100. Yenumala SR, Kumar P, Maity SK et al (2020) Hydrodeoxygenation of karanja oil using ordered mesoporous nickel-alumina composite catalysts. Catal Today 348. https://doi.org/10.1016/j.cattod.2019.08.040

  101. Yenumala SR, Kumar P, Maity SK, et al (2019) Production of green diesel from karanja oil (Pongamia pinnata) using mesoporous NiMo-alumina composite catalysts. Bioresour Technol Reports 7:100288

    Google Scholar 

  102. Yenumala SR, Maity SK (2011) Reforming of vegetable oil for production of hydrogen: a thermodynamic analysis. Int J Hydrogen Energy 36:11666–11675. https://doi.org/10.1016/j.ijhydene.2011.06.055

    Article  Google Scholar 

  103. Yenumala SR, Maity SK, Shee D (2016a) Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. React Kinet Mech Catal 120:109–128. https://doi.org/10.1007/s11144-016-1098-2

    Article  Google Scholar 

  104. Yenumala SR, Maity SK, Shee D (2016b) Hydrodeoxygenation of karanja oil over supported nickel catalysts: influence of support and nickel loading. Catal Sci Technol 6:3156–3165. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  105. Yu ZT, Xu X, Hu YC et al (2011) Unsteady natural convection heat transfer from a heated horizontal circular cylinder to its air-filled coaxial triangular enclosure. Fuel 90:1128–1132. https://doi.org/10.1016/j.fuel.2010.11.031

    Article  MATH  Google Scholar 

  106. Zhang B, Wu JJ, Yang C et al (2018) Recent developments in commercial processes for refining bio-feedstocks to renewable diesel. Bioenergy Res 11:689–702. https://doi.org/10.1007/s12155-018-9927-y

    Article  Google Scholar 

  107. Zhang H, Lin H, Zheng Y (2014) The role of cobalt and nickel in deoxygenation of vegetable oils. Appl Catal B Environ 160–161:415–422. https://doi.org/10.1016/j.apcatb.2014.05.043

    Article  Google Scholar 

  108. Zhou L, Lawal A (2016) Hydrodeoxygenation of microalgae oil to green diesel over Pt, Rh and presulfided NiMo catalysts. Catal Sci Technol 6:1442–1454. https://doi.org/10.1039/C5CY01307K

    Article  Google Scholar 

  109. Zhou L, Lawal A (2015) Evaluation of presulfided NiMo/γ-Al2O3 for hydrodeoxygenation of microalgae oil to produce green diesel. Energy Fuels 29:262–272. https://doi.org/10.1021/ef502258q

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakara Reddy Yenumala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yenumala, S.R., Sarkhel, B., Maity, S.K. (2022). Technological Advancements in the Production of Green Diesel from Biomass. In: Aslam, M., Shivaji Maktedar, S., Sarma, A.K. (eds) Green Diesel: An Alternative to Biodiesel and Petrodiesel. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2235-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2235-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2234-3

  • Online ISBN: 978-981-19-2235-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation