Multigate MOS-HEMT

  • Chapter
  • First Online:
HEMT Technology and Applications
  • 1130 Accesses

Abstract

Gallium nitride (GaN) based High-Electron-Mobility Transistors (HEMTs), and in particular, aluminum gallium nitride (AlGaN)/GaN devices have become a popular choice due to their ability to produce higher power densities at higher frequencies as compared to their silicon (Si) and gallium arsenide (GaAs) based counterparts. GaN-based HEMTs have also proven to be excellent candidates for amplifiers operating at higher power levels, high temperatures, and in robust environments. This chapter discusses how the performance of such GaN-based HEMTs can be enhanced by introducing a gate oxide and an underlapped structure. The chapter also delves into the advantages of multigate structures and the use of quaternary indium aluminum gallium nitride (InAlGaN) compound to deliver higher breakdown voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.K. Saha, FinFET Devices for VLSI Circuits and Systems (CRC Press, 2020)

    Google Scholar 

  2. C. Bhargava, G.M. Khanal, Advanced VLSI Technology Technical Questions and Solutions (River Publishers, 2020)

    Google Scholar 

  3. R. Qu, W. Zhang, Q. Lv, M. Zhang, Research on security evaluation of space used very large scale integration (VLSI), in The 2nd International Conference on Computing and Data Science (2021), pp. 1–5

    Google Scholar 

  4. V.K. Sharma, Design and simulation of FinFET circuits at different technologies, in 2021 6th International Conference on Inventive Computation Technologies (ICICT) (IEEE, 2021), pp. 1–6

    Google Scholar 

  5. T. Mikolajick, U. Schroeder, S. Slesazeck, The past, the present, and the future of ferroelectric memories. IEEE Trans. Electron Devices 67(4), 1434–1443 (2020)

    Article  Google Scholar 

  6. D. **e, E. Simoen, H. Chen, H. Arimura, N. Horiguchi, Impact of dummy gate removal and a silicon cap on the low-frequency noise performance of Germanium nFinFETs. IEEE Trans. Electron Devices 67(11), 4713–4719 (2020)

    Article  Google Scholar 

  7. F.U. Ahmed, Z.T. Sandhie, L. Ali, M.H. Chowdhury, A brief overview of on-chip voltage regulation in high-performance and high-density integrated circuits. IEEE Access (2020)

    Google Scholar 

  8. A. Amirsoleimani, F. Alibart, V. Yon, J. Xu, M.R. Pazhouhandeh, S. Ecoffey, Y. Beilliard, R. Genov, D. Drouin, Memory vector‐matrix multiplication in monolithic complementary metal–oxide–semiconductor‐memristor integrated circuits: design choices, challenges, and perspectives. Adv. Intell. Syst. 2(11), 2000115 (2020)

    Google Scholar 

  9. H. Mukherjee, R. Dasgupta, M. Kar, A. Kundu, A comparative analysis of analog performances of underlapped dual gate AlGaN/GaN based MOS-HEMT and Schottky-HEMT, in 2020 IEEE Calcutta Conference (CALCON) (IEEE, 2020), pp. 412–416

    Google Scholar 

  10. A. Lavasani, D. Bulmash, S.D. Sarma, Wiedemann-Franz law and Fermi liquids. Phys. Rev. B 99(8), 085104 (2019)

    Google Scholar 

  11. B. Syamal, A. Kundu, AlGaN/GaN HEMT modeling and simulation, in Handbook for III–V High Electron Mobility Transistor Technologies (CRC Press, 2019), pp. 251–273

    Google Scholar 

  12. A. Kundu, S. Roy, C.K. Ghosh, C.K. Sarkar, Micro/nanoelectromechanical systems, in Nanotechnology (CRC Press, 2017), pp. 297–318

    Google Scholar 

  13. R. Chen, F.F. Wang, SiC and GaN devices with cryogenic cooling. IEEE Open J. Power Electron. 2, 315–326 (2021)

    Article  Google Scholar 

  14. S.M. Abd El-Azeem, S.M. El-Ghanam, Comparative study of gallium nitride and silicon carbide MOSFETs as power switching applications under cryogenic conditions. Cryogenics 107, 103071 (2020)

    Google Scholar 

  15. A. Mondal, A. Roy, R. Mitra, A. Kundu, Comparative study of variations in gate oxide material of a novel underlap DG MOS-HEMT for analog/RF and high power applications. Silicon 12(9), 2251–2257 (2020)

    Article  Google Scholar 

  16. R. Sun, J. Lai, W. Chen, B. Zhang, GaN power integration for high frequency and high efficiency power applications: a review. IEEE Access 8, 15529–15542 (2020)

    Google Scholar 

  17. M.A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, M.S. Shur, AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett. 21(2), 63–65 (2000)

    Article  Google Scholar 

  18. R. Mitra, A. Roy, A. Mondal, A. Kundu, Influence of symmetric underlap on analog, RF and power applications for DG AlGaN/GaN MOS-HEMT. Silicon, 1–8 (2021)

    Google Scholar 

  19. M.A. Khan, G. Simin, J. Yang, J. Zhang, A. Koudymov, M.S. Shur, R. Gaska, X. Hu, A. Tarakji, Insulating gate III–N heterostructure field-effect transistors for high-power microwave and switching applications. IEEE Trans. Microw. Theory Tech. 51(2), 624–633 (2003)

    Google Scholar 

  20. P. Kordoš, D. Gregušová, R. Stoklas, K. Čičo, J. Novák, Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor. Appl. Phys. Lett. 90(12), 123513 (2007)

    Article  Google Scholar 

  21. X. Ding, Y. Zhou, J. Cheng, A review of gallium nitride power device and its applications in motor drive. CES Trans. Electr. Mach. Syst. 3(1), 54–64 (2019)

    Article  Google Scholar 

  22. A. Avila, M. Lucu, A. Garcia-Bediaga, U. Ibarguren, I. Gandiaga, A. Rujas, Hybrid energy storage system based on Li-Ion and Li-S battery modules and GaN-based DC–DC converter. IEEE Access 9, 132342–132353 (2021)

    Article  Google Scholar 

  23. A. Acharyya, Gallium nitride-based solid-state devices for terahertz applications. Adv. Mater. Future Terahertz Devices Circuits Syst. 727, 9 (2021)

    Article  Google Scholar 

  24. R.K. Kaneriya, G. Rastogi, P.K. Basu, R.B. Upadhyay, A.N. Bhattacharya, Intersubband device modeling of gallium nitride high electron mobility transistor for terahertz applications. Radio Sci. 54(12), 1172–1180 (2019)

    Google Scholar 

  25. A.S.A. Fletcher, D. Nirmal, A survey of gallium nitride HEMT for RF and high power applications. Superlattices Microstruct. 109, 519–537 (2017)

    Google Scholar 

  26. L.-H. Hsu, Y.-Y. Lai, P.-T. Tu, C. Langpoklakpam, Y.-T. Chang, Y.-W. Huang, W.-C. Lee et al., Development of GaN HEMTs fabricated on silicon, silicon-on-insulator, and engineered substrates and the heterogeneous integration. Micromachines 12(10), 1159 (2021)

    Google Scholar 

  27. F. Meng, D. Disney, B. Liu, Y.B. Volkan, A. Zhou, Z. Liang, X. Yi et al., Heterogeneous integration of GaN and BCD technologies and its applications to high conversion-ratio DC–DC boost converter IC. IEEE Trans. Power Electron. 34(3), 1993–1996 (2018)

    Google Scholar 

  28. A. Chini et al., Experimental and numerical correlation between current-collapse and Fe-do** profiles in GaN HEMTs, in IEEE International Reliability Physics Symposium Proceedings (2012), pp. 2–5

    Google Scholar 

  29. B. Syamal, X. Zhou, S.B. Chiah, A.M. Jesudas, S. Arulkumaran, G.I. Ng, A comprehensive compact model for GaN HEMTs, including quasi-steady-state and transient trap-charge effects. IEEE Trans. Electron Devices 63(4), 1478–1485 (2016)

    Article  Google Scholar 

  30. R. Ma, K.H. Teo, S. Shinjo, K. Yamanaka, P.M. Asbeck, A GaN PA for 4G LTE-advanced and 5G: meeting the telecommunication needs of various vertical sectors including automobiles, robotics, health care, factory automation, agriculture, education, and more. IEEE Microw. Mag. 18(7), 77–85 (2017)

    Google Scholar 

  31. C. Jiang, T. Liu, C. Du, X. Huang, M. Liu, Z. Zhao, L. Li et al., Piezotronic effect tuned AlGaN/GaN high electron mobility transistor. Nanotechnology 28(45), 455203 (2017)

    Google Scholar 

  32. W.E. Muhea, F.M. Yigletu, R. Cabre-Rodon, B. Iniguez, Analytical model for Schottky barrier height and threshold voltage of AlGaN/GaN HEMTs with piezoelectric effect. IEEE Trans. Electron Devices 65(3), 901–907 (2018)

    Google Scholar 

  33. Z. Cui, K. Bai, X. Wang, E. Li, J. Zheng, Electronic, magnetism, and optical properties of transition metals adsorbed g-GaN. Physica E 118, 113871 (2020)

    Article  Google Scholar 

  34. J. Li, H. Liu, Magnetism investigation of GaN monolayer doped with group VIII B transition metals. J. Mater. Sci. 53(23), 15986–15994 (2018)

    Article  Google Scholar 

  35. E. Vetter, M. Biliroglu, D. Seyitliyev, P. Reddy, R. Kirste, Z. Sitar, R. Collazo, K. Gundogdu, D. Sun, Observation of carrier concentration dependent spintronic terahertz emission from n-GaN/NiFe heterostructures. Appl. Phys. Lett. 117(9), 093502 (2020)

    Article  Google Scholar 

  36. A. Roy, R. Mitra, A. Mondal, A. Kundu, Analog/RF and power performance analysis of an underlap DG AlGaN/GaN based high-k dielectric MOS-HEMT. Silicon, 1–8 (2021)

    Google Scholar 

  37. R. Mitra, A. Roy, A. Kundu, M. Kar, Impact of AlGaN do** concentration on the analog/RF performance of a double gate underlap n-AlGaN/GaN MOSHEMT, in 2020 International Symposium on Devices, Circuits and Systems (ISDCS) (IEEE, 2020), pp. 1–4

    Google Scholar 

  38. G. Hansdah, M. Raul, Pyroelectricity with an extra-polarization effect in AlN/GaN heterostructures. Mater. Today Proc. (2021)

    Google Scholar 

  39. M.K. Chattopadhyay, K.T. Upadhyay, Unified analytical model for charge density and plasmonic waves in the quaternary AlInGaN/AlN/GaN heterostructures, in Microelectronics, Circuits and Systems (Springer, Singapore, 2021), pp. 167–177

    Google Scholar 

  40. E. Conwell, V.F. Weisskopf, Theory of impurity scattering in semiconductors. Phys. Rev. 77(3), 388–390 (1949). S.A. Sleiman, A. Di Carlo, G. Verzellesi, G. Meneghesso, E. Zanoni, Current collapse associated with surface states in GaN-based HEMT’s. theoretical/experimental investigations. Simul. Semicond. Process. Devices, 81–84 (2004)

    Google Scholar 

  41. X. Hu, S. Hwang, K. Hussain, R. Floyd, S. Mollah, F. Asif, G. Simin, A. Khan, Doped barrier Al0.65Ga0.35N/Al0.40Ga0.60N MOSHFET with SiO2 gate-insulator and Zr-based ohmic contacts. IEEE Electron Device Lett. 39(10), 1568–1571 (2018)

    Article  Google Scholar 

  42. K. Nishiguchi, S. Kaneki, S. Ozaki, T. Hashizume, Current linearity and operation stability in Al2O3-gate AlGaN/GaN MOS high electron mobility transistors. Jpn. J. Appl. Phys. 56(10), 101001 (2017)

    Article  Google Scholar 

  43. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, Electron transport characteristics of GaN for high temperature device modeling. J. Appl. Phys. 83(9), 4777 (1998)

    Article  Google Scholar 

  44. R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 60(6 Part 2), 1764–1783 (2012)

    Google Scholar 

  45. S. Kumar, N. Remesh, S.B. Dolmanan, S. Tripathy, S. Raghavan, R. Muralidharan, D.N. Nath, Interface traps at Al2O3/InAlN/GaN MOS-HEMT-on-200 mm Si. Solid-State Electron. 137, 117–122 (2017)

    Google Scholar 

  46. M. Zhu, J. Ma, E. Matioli. Investigation of p-GaN tri-gate normally-off GaN power MOSHEMTs, in 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD) (IEEE, 2020), pp. 345–348

    Google Scholar 

  47. Z.-S. Kim, H.-S. Lee, J. Na, S.-B. Bae, E. Nam, J.-W. Lim, Ultra-low rate dry etching conditions for fabricating normally-off field effect transistors on AlGaN/GaN heterostructures. Solid-State Electron. 140, 12–17 (2018)

    Article  Google Scholar 

  48. A. Malmros, Advanced III-Nitride Technology for mm-Wave Applications (Chalmers Tekniska Hogskola, Sweden, 2019)

    Google Scholar 

  49. F. Azam, AlGaN/GaN MOSHFETs using ALD dielectrics: a study in performance and reliability. Ph.D. dissertation. North Carolina State University (2018)

    Google Scholar 

  50. P. Fiorenza, G. Greco, F. Iucolano, A. Patti, F. Roccaforte, Channel mobility in GaN hybrid MOS-HEMT using SiO2 as gate insulator. IEEE Trans. Electron Devices 64(7), 2893–2899 (2017)

    Article  Google Scholar 

  51. S. Basu, P.K. Singh, S.-K. Lin, P.-W. Sze, Y.-H. Wang, Effects of short-term DC-bias-induced stress on n-GaN/AlGaN/GaN MOSHEMTs with liquid-phase-deposited Al2O3 as a gate dielectric. IEEE Trans. Electron Devices 57(11), 2978–2987 (2010)

    Article  Google Scholar 

  52. Z.H. Liu, G.I. Ng, H. Zhou, S. Arulkumaran, Y.K.T. Maung, Reduced surface leakage current and trap** effects in AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation. Appl. Phys. Lett. 98(11), 113506 (2011)

    Article  Google Scholar 

  53. S. Bajaj, T.-H. Hung, F. Akyol, D. Nath, S. Rajan, Modeling of high composition AlGaN channel high electron mobility transistors with large threshold voltage. Appl. Phys. Lett. 105(26), 263503 (2014)

    Article  Google Scholar 

  54. H.-Y. Liu, W.-C. Ou, W.-C. Hsu, Investigation of post oxidation annealing effect on H2O2-grown-Al2O3/AlGaN/GaN MOSHEMTs. IEEE J. Electron Devices Soc. 4(5), 358–364 (2016)

    Article  Google Scholar 

  55. H.-Y. Liu, C.-W. Lin, C.-S. Lee, W.-C. Hsu, Threshold voltage engineering of enhancement-mode AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors with different do** concentration of in situ Cl−doped Al2O3. ECS J. Solid State Sci. Technol. 10(7), 075005 (2021)

    Article  Google Scholar 

  56. A. Roy, R. Mitra, A. Kundu, Influence of channel thickness on analog and RF performance enhancement of an underlap DG AlGaN/GaN based MOS-HEMT device, in 2019 Devices for Integrated Circuit (DevIC) (IEEE, 2019), pp. 186–190

    Google Scholar 

  57. S. Adak, S.K. Swain, Impact of high-K dielectric materials on performance analysis of underlap In0.17Al0.83N/GaN DG-MOSHEMTs. Nano 14(05), 1950060 (2019)

    Google Scholar 

  58. S. Kumar, M. Ali, R. Kumar, R. Mitra, A. Kundu, M. Kar, Impact of source and drain underlap on analog performance of double-gate AlGaN/GaN MOS-HEMT, in 2020 IEEE Calcutta Conference (CALCON) (IEEE, 2020), pp. 378–381

    Google Scholar 

  59. K. Koley, A. Dutta, B. Syamal, S.K. Saha, C.K. Sarkar, Subthreshold analog/RF performance enhancement of underlap DG FETs with high-k spacer for low power applications. IEEE Trans. Electron Devices 60(1), 63–69 (2012)

    Google Scholar 

  60. M. Hrit, K. Mousiki, K. Atanu, Enhancement in Analog/RF and power performance of underlapped dual gate GaN based MOSHEMTs with quaternary InAlGaN barrier of varying widths. J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-09324-6

    Article  Google Scholar 

  61. B. Reuters, A. Wille, N. Ketteniss, H. Hahn, B. Holländer, M. Heuken, H. Kalisch, A. Vescan, Polarization-engineered enhancement-mode high-electron-mobility transistors using quaternary AlInGaN barrier layers. J. Electron. Mater. 42(5), 826–832 (2013)

    Google Scholar 

  62. S. Turuvekere, N. Karumuri, A.A. Rahman, A. Bhattacharya, A.D. Gupta, N.D. Gupta, Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: comparison and modeling. IEEE Trans. Electron Devices 60(10), 3157–3165 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousiki Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, A., Kar, M. (2023). Multigate MOS-HEMT. In: Lenka, T.R., Nguyen, H.P.T. (eds) HEMT Technology and Applications. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2165-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2165-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2164-3

  • Online ISBN: 978-981-19-2165-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation