Unmanned Aerial Vehicle (UAV) Applications in Cotton Production

  • Chapter
  • First Online:
Unmanned Aerial Systems in Precision Agriculture

Part of the book series: Smart Agriculture ((SA,volume 2))

Abstract

Cotton (Gossypium hirsutum L.) is an important cash crop and primary materials for clothing, fine paper, animal feed, and oil industries. Cotton production is affected by a combination effect of crop varieties, environment, and management. Precision agriculture technology has shown great potential to improve cotton production with sufficient high-resolution spatiotemporal data of soil, environment, and cotton development from seedling to harvest. The advances in unmanned aerial vehicles (UAVs), computer vision, and remote and proximal sensing technologies make it possible to scan large-scale field efficiently and quantify crop development. The big data analytics enabled by artificial intelligence (AI) have significantly increased the capacity in processing and analyzing complex data to quantify the interactions of environment and management on crop growth and yield. This chapter aims to summarize UAV applications in cotton production, focusing on field scouting and decision making, such as stand count, growth monitoring, and yield prediction, under different soil, weather conditions, and irrigation management. Meanwhile, the potentials and challenges of using UAV technologies in cotton production are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson RM et al (2002) Variability in cotton fiber yield, fiber quality, and soil properties in a southeastern coastal plain. Agron J 94(6):1305–1316

    Article  Google Scholar 

  2. Zhang J et al (2014) Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton. Crop Sci 54(4):1289–1303

    Article  Google Scholar 

  3. National Cotton Council of America (2021) Cotton: from field to fabric. [cited 2021 06/27]. https://www.cotton.org/pubs/cottoncounts/fieldtofabric/upload/Cotton-From-Field-to-Fabric-129k-PDF.pdf

  4. Pennock D, McKenzie N, Montanarella L (2015) Status of the world's soil resources. Technical Summary FAO, Rome, Italy

    Google Scholar 

  5. Hatfield JL, Walthall CL (2015) Meeting global food needs: realizing the potential via genetics× environment× management interactions. Agron J 107(4):1215–1226

    Article  Google Scholar 

  6. Holman FH et al (2016) High throughput field phenoty** of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens 8(12):1031

    Article  Google Scholar 

  7. Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precision Agric 13(6):693–712

    Article  CAS  Google Scholar 

  8. Lindblom J et al (2017) Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agric 18(3):309–331

    Article  Google Scholar 

  9. Maes WH, Steppe K (2019) Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci 24(2):152–164

    Article  CAS  PubMed  Google Scholar 

  10. Hunt ER et al (2013) A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int J Appl Earth Obs Geoinf 21:103–112

    Google Scholar 

  11. Bendig J et al (2015) Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs Geoinf 39:79–87

    Google Scholar 

  12. Sudduth KA et al (2003) Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron J 95(3):472–482

    Article  Google Scholar 

  13. Vories E et al (2020) Comparison of precision and conventional irrigation management of cotton and impact of soil texture. Prec Agricul, 1–18

    Google Scholar 

  14. Feng A et al (2020) Yield estimation in cotton using UAV-based multi-sensor imagery. Biosys Eng 193:101–114

    Article  Google Scholar 

  15. Turner D et al (2014) Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds. Remote Sens 6(5):4003–4024

    Article  Google Scholar 

  16. Yang G et al (2017) Unmanned aerial vehicle remote sensing for field-based crop phenoty**: current status and perspectives. Front Plant Sci 8:1111

    Article  PubMed  PubMed Central  Google Scholar 

  17. Feng A et al (2020) Evaluation of cotton emergence using UAV-based narrow-band spectral imagery with customized image alignment and stitching algorithms. Remote Sens 12(11):1764

    Article  Google Scholar 

  18. ** traits using UAV-based sensors. Comput Elect Agricult 178:105731

    Google Scholar 

  19. Kolláth Z et al (2020) Introducing the dark sky unit for multi-spectral measurement of the night sky quality with commercial digital cameras. J Quant Spect Rad Transfer, 253

    Google Scholar 

  20. Chen Y, Mei X, Liu J (2015) Cotton growth monitoring and yield estimation based on assimilation of remote sensing data and crop growth model. In Geoinformatics, 2015 23rd International Conference on. IEEE. pp 1–4

    Google Scholar 

  21. Huang Y et al (2016) Cotton yield estimation using very high-resolution digital images acquired with a low-cost small unmanned aerial vehicle. Trans ASABE 59(6):1563–1574

    Article  Google Scholar 

  22. Feng A et al (2020) Evaluation of cotton emergence using UAV-based imagery and deep learning. Comput Elect Agricul 177:105711

    Google Scholar 

  23. Hunt ER et al (2011) NIR-green-blue high-resolution digital images for assessment of winter cover crop biomass. GIScience & Remote Sens 48(1):86–98

    Article  Google Scholar 

  24. Liu S et al (2017) A method to estimate plant density and plant spacing heterogeneity: application to wheat crops. Plant Methods 13(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  25. Steduto P et al (2012) Crop yield response to water, vol 1028. FAO Rome

    Google Scholar 

  26. Walton JT, Nowak DJ, Greenfield EJ (2008) Assessing urban forest canopy cover using airborne or satellite imagery. Arboricul Urban Forestry 38(6):334–340

    Article  Google Scholar 

  27. Chang A et al (2017) Crop height monitoring with digital imagery from unmanned aerial system (UAS). Comput Electron Agric 141:232–237

    Article  Google Scholar 

  28. Malambo L et al (2018) Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. Int J Appl Earth Obs Geoinf 64:31–42

    Google Scholar 

  29. Sharma K, Singhal A (2016) New algorithm for flower yield estimation and yield comparison using Matlab. Imp J Interdisc Res 2(8)

    Google Scholar 

  30. Friedman JM, Hunt ER, Mutters RG (2016) Assessment of leaf color chart observations for estimating maize chlorophyll content by analysis of digital photographs. Agron J 108(2):822–829

    Article  Google Scholar 

  31. Reyes JF, Correa C, Zúñiga J (2017) Reliability of different color spaces to estimate nitrogen SPAD values in maize. Comput Electron Agric 143:14–22

    Article  Google Scholar 

  32. Schwarz MW, Cowan WB, Beatty JC (1987) An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models. ACM Trans Grap (TOG) 6(2):123–158

    Article  Google Scholar 

  33. Dalezios N et al (2001) Cotton yield estimation based on NOAA/AVHRR produced NDVI. Phys Chem Earth Part B 26(3):247–251

    Article  Google Scholar 

  34. Moges S et al (2005) Evaluation of green, red, and near infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield. J Plant Nutr 27(8):1431–1441

    Article  CAS  Google Scholar 

  35. Ren J et al (2008) Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int J Appl Earth Obs Geoinf 10(4):403–413

    Google Scholar 

  36. Barnhart I et al (2019) Evaluating sorghum senescence patterns using small unmanned aerial vehicles and multispectral imaging. Kansas Field Res 2019:166

    Google Scholar 

  37. Thompson CN et al (2019) Using normalized difference red edge index to assess maturity in cotton. Crop Sci 59(5):2167–2177

    Article  Google Scholar 

  38. Ludovisi R et al (2017) UAV-based thermal imaging for high-throughput field phenoty** of black poplar response to drought. Front Plant Sci 8:1681

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rischbeck P et al (2016) Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur J Agron 78:44–59

    Article  Google Scholar 

  40. Alganci U et al (2014) Estimating maize and cotton yield in southeastern Turkey with integrated use of satellite images, meteorological data and digital photographs. Field Crop Res 157:8–19

    Article  Google Scholar 

  41. Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Advances in Botanical Research. Academic Press, pp 107–163

    Google Scholar 

  42. Alchanatis V et al (2010) Evaluation of different approaches for estimating and map** crop water status in cotton with thermal imaging. Precision Agric 11(1):27–41

    Article  Google Scholar 

  43. Bajwa SG, Vories ED (2007) Spatial analysis of cotton (Gossypium hirsutum L.) canopy responses to irrigation in a moderately humid area. Irrig Sci 25(4):429–441

    Google Scholar 

  44. Bian J et al (2019) Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery. Remote Sens 11(3):267

    Article  Google Scholar 

  45. Oosterhuis DM (1990) Growth and development of a cotton plant. Nitrogen nutrition of cotton: practical issues, pp 1–24

    Google Scholar 

  46. Ritchie GL et al (2007) Cotton growth and development. Cooperative Extension Service and the University of Georgia College of Agricultural and Environmental Sciences: Athens, GA, USA

    Google Scholar 

  47. Main CL (2012) W287 cotton growth and development. The University of Tennessee, Institute of Agriculture

    Google Scholar 

  48. Reinbott DL, Stevens G (2021) Cotton tillage and planting guidelines. [cited 2021 06/27]. https://extension.missouri.edu/publications/g4270

  49. Celik A, Ozturk I, Way T (2007) Effects of various planters on emergence and seed distribution uniformity of sunflower. Appl Eng Agric 23(1):57–61

    Article  Google Scholar 

  50. Sansone C et al (2002) Texas cotton production: emphasizing integrated pest management. Texas, USA: Texas Cooperative Extension Service, the Texas A & M University System

    Google Scholar 

  51. Supak J (1990) Making replant decisions. in 1990 Beltwide cotton production conference. National Cotton Council of America, pp 45–48

    Google Scholar 

  52. Goodell PB et al (2015) UC IPM pest management guidelines cotton. Oakland, CA

    Google Scholar 

  53. Vories E et al (2007) Estimating the impact of delaying irrigation for Midsouth cotton on clay soil. Trans ASABE 50(3):929–937

    Article  Google Scholar 

  54. Vories E, Jones A (2016) Influence of irrigation patterns on the effectiveness of furrow irrigation of Cotton. In World Environmental and Water Resources Congress 2016

    Google Scholar 

  55. Vories ED et al (2015) Impact of soil variability on irrigated and rainfed cotton. J Cotton Sci 19(1):1–14

    Google Scholar 

  56. Forcella F et al (2000) Modeling seedling emergence. Field Crop Res 67(2):123–139

    Article  Google Scholar 

  57. Ghassemi-Golezani K, Dalil B (2014) Effects of seed vigor on growth and grain yield of maize. Plant Breeding Seed Science 70(1):81–90

    Article  Google Scholar 

  58. Wiles LJ, Schweizer EE (1999) The cost of counting and identifying weed seeds and seedlings. Weed Sci 47(6):667–673

    Article  CAS  Google Scholar 

  59. Chen R et al (2018) Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images. Prec Agricul 19(1):161–177

    Google Scholar 

  60. Oh S et al (2020) Plant counting of cotton from UAS imagery using deep learning-based object detection framework. Remote Sens 12(18):2981

    Article  Google Scholar 

  61. Lin Z, Guo W (2021) Cotton stand counting from unmanned aerial system imagery using mobilenet and centernet deep learning models. Remote Sens 13(14):2822

    Article  Google Scholar 

  62. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  63. Zhao B et al (2018) Rapeseed seedling stand counting and seeding performance evaluation at two early growth stages based on unmanned aerial vehicle imagery. Front Plant Sci, 9

    Google Scholar 

  64. Adão T et al (2017) Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9(11):1110

    Article  Google Scholar 

  65. Cobb JN et al (2013) Next-generation phenoty**: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126(4):867–887

    Article  PubMed  PubMed Central  Google Scholar 

  66. Perry C et al (2012) Cotton irrigation management for humid regions, in Cotton Incorporated, Cary, NC

    Google Scholar 

  67. Loka D (2012) Effect of water-deficit stress on cotton during reproductive development

    Google Scholar 

  68. Allen RG et al (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300(9):D05109

    Google Scholar 

  69. Khan A et al (2018) Co** with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 51(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ballester C et al (2019) Monitoring the effects of water stress in cotton using the green red vegetation index and red edge ratio. Remote Sens 11(7):873

    Article  Google Scholar 

  71. Sullivan D et al (2007) Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy. Trans ASABE 50(6):1963–1969

    Article  Google Scholar 

  72. Chang A et al (2020) Measurement of cotton canopy temperature using radiometric thermal sensor mounted on the unmanned aerial vehicle (UAV). J Sens, 2020

    Google Scholar 

  73. Zhou Z et al (2021) Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput Elect Agricul 182:106019

    Google Scholar 

  74. Chen S et al (2020) Retrieval of cotton plant water content by UAV-based vegetation supply water index (VSWI). Int J Remote Sens 41(11):4389–4407

    Article  Google Scholar 

  75. Nahiyoon SA et al (2020) Biocidal radiuses of cycloxaprid, imidacloprid and lambda-cyhalothrin droplets controlling against cotton aphid (Aphis gossypii) using an unmanned aerial vehicle. Pest Manag Sci 76(9):3020–3029

    Article  CAS  PubMed  Google Scholar 

  76. Kaivosoja J et al (2021) Reference measurements in develo** UAV systems for detecting pests, weeds, and diseases. Remote Sens 13(7):1238

    Article  Google Scholar 

  77. Meng Y et al (2019) Harvest aids efficacy applied by unmanned aerial vehicles on cotton crop. Indus Crops Prod 140:111645

    Google Scholar 

  78. Yi L et al (2019) Exploring the potential of UAV imagery for variable rate spraying in cotton defoliation application. Int J Prec Agricult Aviat 2(1)

    Google Scholar 

  79. **n F et al (2018) Effects of dosage and spraying volume on cotton defoliants efficacy: a case study based on application of unmanned aerial vehicles. Agronomy 8(6):85

    Article  CAS  Google Scholar 

  80. Lou Z et al (2018) Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy 8(9):187

    Article  CAS  Google Scholar 

  81. Yadav PK et al (2019) Assessment of different image enhancement and classification techniques in detection of volunteer cotton using UAV remote sensing. in Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenoty** IV. 2019. International Society for Optics and Photonics

    Google Scholar 

  82. Puig E et al (2015) New developments in UAV remote sensing for pest management and the implications for cotton

    Google Scholar 

  83. Huang H et al (2018) A two-stage classification approach for the detection of spider mite-infested cotton using UAV multispectral imagery. Remote Sens Lett 9(10):933–941

    Article  Google Scholar 

  84. Xu R et al (2018) Aerial images and convolutional neural network for cotton bloom detection. Front Plant Sci 8:2235

    Article  PubMed  PubMed Central  Google Scholar 

  85. De Castro AI et al (2018) An automatic random forest-OBIA algorithm for early weed map** between and within crop rows using UAV imagery. Remote Sens 10(2):285

    Article  Google Scholar 

  86. Sapkota B et al (2020) Map** and estimating weeds in cotton using unmanned aerial systems-borne imagery. Agri Eng 2(2):350–366

    Google Scholar 

  87. Wang T et al (2020) Automatic classification of cotton root rot disease based on UAV remote sensing. Remote Sens 12(8):1310

    Article  Google Scholar 

  88. Xavier TW et al (2019) Identification of Ramularia leaf blight cotton disease infection levels by multispectral, multiscale UAV imagery. Drones 3(2):33

    Article  Google Scholar 

  89. Wang T et al (2020) A plant-by-plant method to identify and treat cotton root rot based on UAV remote sensing. Remote Sens 12(15):2453

    Article  Google Scholar 

  90. Thomasson J et al (2021) High-precision fungicide application for cotton disease based on UAV remote sensing. Precision agriculture’21. Wageningen Academic Publishers, pp 849–858

    Google Scholar 

  91. Deng X et al (2020) Detection and location of dead trees with pine wilt disease based on deep learning and UAV remote sensing. Agri Eng 2(2):294–307

    Google Scholar 

  92. Gao Z et al (2020) Deep learning application in plant stress imaging: a review. Agri Eng 2(3):430–446

    Google Scholar 

  93. Onder S et al (2005) Different irrigation methods and water stress effects on potato yield and yield components. Agric Water Manag 73(1):73–86

    Article  Google Scholar 

  94. Bell JM et al (2018) Deficit irrigation effects on yield and yield components of grain sorghum. Agric Water Manag 203:289–296

    Article  Google Scholar 

  95. Cuong TX et al (2017) Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci 24(5):283–290

    Article  Google Scholar 

  96. Schut AG et al (2018) Assessing yield and fertilizer response in heterogeneous smallholder fields with UAVs and satellites. Field Crop Res 221:98–107

    Article  Google Scholar 

  97. Beres BL et al (2020) Towards a better understanding of Genotype× Environment× Management interactions–a global Wheat Initiative agronomic research strategy. Front Plant Sci 11:828

    Article  PubMed  PubMed Central  Google Scholar 

  98. Feng A (2021) Quantifying the effect of environments on crop emergence, development and yield using sensing and deep learning techniques. University of Missouri--Columbia

    Google Scholar 

  99. Komm B, Moyer M (2015) Vineyard yield estimation

    Google Scholar 

  100. Feng A et al (2019) Cotton yield estimation from UAV-based plant height. Trans ASABE 62(2):393–404

    Article  Google Scholar 

  101. Yeom J et al (2018) Automated open cotton boll detection for yield estimation using unmanned aircraft vehicle (UAV) data. Remote Sens 10(12):1895

    Article  Google Scholar 

  102. Xu W et al (2020) Establishing a model to predict the single boll weight of cotton in northern **njiang by using high resolution UAV remote sensing data. Comput Electr Agricul 179:105762

    Google Scholar 

  103. Xu W et al (2021) Cotton yield estimation model based on machine learning using time series UAV remote sensing data. Int J Appl Earth Observ Geoinf 104:102511

    Google Scholar 

  104. Maimaitijiang M et al (2020) Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens Environ 237:111599

    Google Scholar 

  105. Yang Q et al (2019) Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crop Res 235:142–153

    Article  Google Scholar 

  106. Zhang M et al (2020) Estimation of maize yield and effects of variable-rate nitrogen application using UAV-based RGB imagery. Biosys Eng 189:24–35

    Article  Google Scholar 

  107. Ashapure A et al (2020) Develo** a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS J Photogramm Remote Sens 169:180–194

    Article  Google Scholar 

  108. Schwalbert RA et al (2020) Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricult Forest Meteor 284:107886

    Google Scholar 

  109. Chu Z, Yu J (2020) An end-to-end model for rice yield prediction using deep learning fusion. Comput Elect Agricul 174:105471

    Google Scholar 

  110. Khaki S, Wang L (2019) Crop yield prediction using deep neural networks. Front Plant Sci, 10

    Google Scholar 

  111. Khaki S, Wang L, Archontoulis SV (2020) A cnn-rnn framework for crop yield prediction. Front Plant Sci 10:1750

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. ar**v preprint ar**v:1506.00019

  113. Lee SH et al (2020) Attention-based recurrent neural network for plant disease classification. Front Plant Sci, 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, A., Vong, C.N., Zhou, J. (2022). Unmanned Aerial Vehicle (UAV) Applications in Cotton Production. In: Zhang, Z., Liu, H., Yang, C., Ampatzidis, Y., Zhou, J., Jiang, Y. (eds) Unmanned Aerial Systems in Precision Agriculture. Smart Agriculture, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-19-2027-1_3

Download citation

Publish with us

Policies and ethics

Navigation