A Study on the Effect of Compression Ratio and Bowl-In-Piston Geometry on Knock Limit in Port Injection Natural Gas Converted Engine

  • Conference paper
  • First Online:
The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering (RCTEMME 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 1028 Accesses

Abstract

Natural gas is known as a potential alternative fuel for internal combustion engine due to several advantages such as high octane-number (ON = 130), environment friendly property, safety usage or high low heating value. To enhance reserve capacity on transportation vehicles, the natural gas was compressed to 250 bars into the special cylinder and called CNG fuel. Although high octane-number, the CNG spark ignition engines are without difficulty reached to the knocking combustion when the compression ratio of spark ignition engine was high, too. The main factor of this complication has demonstrated in the previous researches which were the low heating value of natural gas. Therefore, the goal of this study not only is to find out the compression ratio limit for port injection natural gas converted engine by means of simulating research but also enhanced the mass fraction burned. The name’s software using in this study that is AVL Boost, the calculation results were focused on solving the process to get the required octane number as well as the compression ratio limit of real engine. The obtained results showed that, for engine operation in the range of n = 1000–2200 rpm without knocking risk, the converted engine should be fixed the compression ratio at ε = 10. In case of higher compression ratio, the engine should be extended lambda and/or the range of engine speed. Especially, the burning rate of natural gas was increased by varying the bowl-in-piston geometry, and the cause of this increase was due to the enhancement of squish velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kakaee, A.-H., Rahnama, P., Paykani, A.: Influence of fuel composition on combustion and emissions characteristics of natural gas/diesel RCCI engine. J. Nat. Gas Sci. Eng. 25, 58–65 (2015)

    Article  Google Scholar 

  2. ImranKhan, M., Yasmin, T., Shakoor, A.: Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew. Sustain. Energy Rev. 51, 785–797 (2015)

    Article  Google Scholar 

  3. ImranKhan, M., Yasmeen, T., Ijaz Khan, M., Farooq, M., Wakeel, M.: Research progress in the development of natural gas as fuel for road vehicles: A bibliographic review (1991–2016). Renew. Sustain. Energy Rev. 66, 702–741 (2016)

    Article  Google Scholar 

  4. Chauhan, B.S., Cho, H.-M.: A study on experiment of CNG as a clean fuel for automobiles in Korea. J. Korean Soc. Atmospheric Environ. 26, 469–474 (2010). https://doi.org/10.5572/KOSAE.2010.26.5.469

    Article  Google Scholar 

  5. Jeevan Dass, G., Lakshminarayanan, P.A.: Conversion of diesel engines for CNG fuel operation. In: Lakshminarayanan, P.A., Agarwal, A.K. (eds.) Design and Development of Heavy Duty Diesel Engines. EES, pp. 341–392. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0970-4_9

    Chapter  Google Scholar 

  6. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill Book Company (1988), ISBN 0-07-100499-8

    Google Scholar 

  7. Zhao, X., Zhu, Z., Zheng, Z., Yue, Z., Wang, H., Yao, M.: Effects of flame propagation speed on knocking and knock-limited combustion in a downsized spark ignition engine. Fuel 293, 120407 (2021)

    Article  Google Scholar 

  8. Wang, Z., Liu, H., Reitz, R.D.: Knocking Combustion in Spark-ignition Engines. (2017)

    Google Scholar 

  9. Lin, C., Zhang, R., Wei, H., Pan, J.: Effect of flame speed on knocking characteristics for SI engine under critical knocking conditions. Fuel 282, 118846 (2020). https://doi.org/10.1016/j.fuel.2020.118846

    Article  Google Scholar 

  10. Sevik, J.: “Influence of Charge Motion and Compression Ratio on the Performance of a Combustion Concept Employing In-Cylinder Gasoline and Natural Gas” Blending. J. Eng. Gas Turb. Power 140, 121501–1 (2018)

    Google Scholar 

  11. Perini, F., et al.: Piston geometry effects in a light-duty, swirl-supported diesel engine: flow structure characterization (2017)

    Google Scholar 

  12. Kaplan, M.: Influence of swirl, tumble and squish flows on combustion characteristics and emissions in internal combustion engine review. Int. J. Autom. Eng. Technol. IJAET 8(2), 83–102 (2019)

    Google Scholar 

  13. Abdul Gafoor, C.P., Gupta, R.: Numerical investigation of piston bowl geometry and swirl ratio on emission from diesel engines. Energy Conver. Manage. 101, 541–551 (2015)

    Google Scholar 

  14. Barbouchi, Z., Bessrour, J.: Turbulence study in the internal combustion engine. J. Eng. Technol. Res. 1(9), 194–202 (2009)

    Google Scholar 

  15. Mirmohammadia, A., Ommi, F.: Internal combustion engines in cylinder flow simulation improvement using nonlinear k-ε turbulence models. J. Comput. Appl. Res. Mech. Eng. 5(1), 61–69, Autumn-Winter 2015–16

    Google Scholar 

  16. Lee, K.H., Lee, C.S.: Effects of tumble and swirl flows on turbulence scale near top dead centre in a four-valve spark ignition engine. J. Autom. Eng. 217, 607–615 (2003)

    Article  Google Scholar 

  17. Pradeep, B., Ravi, K., Porpatham, E., Krishnaiah, R., Ekambaram, P., Jayapaul, P.: Investigations on the effect of piston squish area on performance and emission characteristics of LPG fuelled lean burn SI engine. SAE Technical Paper 2016-28-0123 (2016)

    Google Scholar 

  18. Chin, Y.-W., Matthews, R.D., Nichols, S.P., Kiehne, T.M.: Use of fractal geometry to model turbulent combustion in SI engines. Combust. Sci. Technol. 86(1–6), 1–30 (1992)

    Article  Google Scholar 

  19. Abdullah, S., Shamsudeen, A.: Turbulence and heat transfer analysis of intake and compression stroke in automotive 4-stroke direct injection engine. Algerian J. Appl. Fluid Mech. 1, 37–50 (2007)

    Google Scholar 

  20. Urushihara, T., Murayama, T., Takagi, Y., Lee, K.H.: Turbulence and cycle-by-cycle variation of mean velocity generated by swirl and tumble flow and their effects on combustion”, SAE Paper 950813 (1995)

    Google Scholar 

  21. Olalekan, W., Aziz, R., Muhamad, W., Mansor, W.: Mass fraction burned of the direct-injection hydrogen enriched compressed natural gas engine employing exhaust gas recirculation. J. Adv. Res. Dynam. Control Syst. 11, 82–94 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Dang Quoc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, S., Chan, H., Quoc, T. (2022). A Study on the Effect of Compression Ratio and Bowl-In-Piston Geometry on Knock Limit in Port Injection Natural Gas Converted Engine. In: Le, AT., Pham, VS., Le, MQ., Pham, HL. (eds) The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering. RCTEMME 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1968-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1968-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1967-1

  • Online ISBN: 978-981-19-1968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation