Emerging Role of Structural and Systems Biology in Anticancer Therapeutics

  • Chapter
  • First Online:
Systems Biomedicine Approaches in Cancer Research

Abstract

Structural biology methods presently play a significant role in the development of new therapeutic drugs such as approaches for cancer therapies. Structural biology is fundamental for recognizing how proteins and genes function and provides us with the necessary clues to design effective cancer therapies. X-ray crystallography has been established to be a dominant instrument in an essential method for the design and development of new compounds with improved affinity and specificity. It can provide delicately complete structural information concerning the interaction of a ligand with a drug or pharmacological target. Fragment-Based Screening has emerged with X-ray Crystallography has turned into an influential screening technology, capable of providing structural information in complexes that involve low-molecular-weight compounds, although with weak binding affinities. The current drug discovery process is extremely complex and requires multidisciplinary efforts and action in cancer therapeutics. Cancer drug development and discovery are leading the way in utilizing molecular biological and genetic information for develo** medicine. In this chapter, we discuss the role of structural biology, including using X-ray crystallography and its role in drug development, with a special focus on the status of the development and discovery of cancer therapeutics. We further discussed how structural biology and systems biology are integrated and give rise to a relatively new domain called “structural systems biology.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 263.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 263.74
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HTS:

High-throughput screening

FBDD:

Fragment-based drug discovery

SPR:

Surface plasmon resonance

PDB:

Protein DataBase

PKB:

Protein kinase B

CLL:

Chronic lymphocytic leukemia

TSG:

Tumor suppressor genes

MEK1:

MAP-kinase kinase 1

mTOR:

Mammalian target of rapamycin

PI3K:

Phosphatidylinositol-3 kinase

HDAC:

Histone deacetylase

References

  • Adams MJ, Blundell TL, Dodson EJ, Dodson GG, Vijayan M, Baker EN, Harding MM, Hodgkin DC, Rimmer B, Sheat S (1969) Structure of rhombohedral 2 zinc insulin crystals. Nature 224:491–495

    Article  CAS  Google Scholar 

  • Aitipamula S, Wong AB, Kanaujia P (2018) Evaluating suspension formulations of theophylline cocrystals with artificial sweeteners. J Pharm Sci 107:604–611

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Mishra R (2021) Bcl-xL expression and regulation in the progression, recurrence, and cisplatin resistance of oral cancer. Life Sci 2021:119705

    Article  CAS  Google Scholar 

  • Alam M, Kashyap T, Pramanik KK, Singh AK, Nagini S, Mishra R (2017) The elevated activation of NFκB and AP-1 is correlated with differential regulation of Bcl-2 and associated with oral squamous cell carcinoma progression and resistance. Clin Oral Investig 21:2721–2731

    Article  PubMed  Google Scholar 

  • Alam M, Kashyap T, Mishra P, Panda AK, Nagini S, Mishra R (2019) Role and regulation of proapoptotic Bax in oral squamous cell carcinoma and drug resistance. Head Neck 41:185–197

    PubMed  Google Scholar 

  • Alam M, Ali S, Ahmed S, Elasbali AM, Adnan M, Islam A, Hassan M, Yadav DK (2021a) Therapeutic potential of ursolic acid in cancer and diabetic neuropathy diseases. Int J Mol Sci 22:12162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam M, Ali S, Mohammad T, Hasan GM, Yadav DK, Hassan M (2021b) B cell lymphoma 2: a potential therapeutic target for cancer therapy. Int J Mol Sci 22:10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam M, Hasan GM, Hassan MI (2021c) A review on the role of TANK-binding kinase 1 signaling in cancer. Int J Biol Macromol 183:2364–2375

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Ali S, Ashraf GM, Bilgrami AL, Yadav DK, Hassan MI (2022) Epigallocatechin 3-gallate: from green tea to cancer therapeutics. Food Chem 379:132135

    Article  CAS  PubMed  Google Scholar 

  • Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7:188–197

    Article  CAS  PubMed  Google Scholar 

  • Anwar S, Shamsi A, Kar RK, Queen A, Islam A, Ahmad F, Hassan MI (2020) Structural and biochemical investigation of MARK4 inhibitory potential of cholic acid: Towards therapeutic implications in neurodegenerative diseases. Int J Biol Macromol 161:596–604

    Article  CAS  PubMed  Google Scholar 

  • Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20:200–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson A, Brown J, Fraser R, Leckie B, Lever A, Mackay A, Morton J, Robertson J, Pickering G (1980) The therapeutics of hypertension. Academic and The Royal Society of Medicine, London, pp 29–61

    Google Scholar 

  • Barnett SF, Bilodeau MT, Lindsley CW (2005) The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr Top Med Chem 5:109–125

    Article  CAS  PubMed  Google Scholar 

  • Becker F, Murthi K, Smith C, Come J, Costa-Roldan N, Kaufmann C, Hanke U, Degenhart C, Baumann S, Wallner W et al (2004) A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem Biol 11:211–223

    Article  CAS  PubMed  Google Scholar 

  • Beddell C, Goodford P, Norrington F, Wilkinson S, Wootton R (1976) Compounds designed to fit a site of known structure in human haemoglobin. Br J Pharmacol 57:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beg A, Khan FI, Lobb KA, Islam A, Ahmad F, Hassan MI (2019) High-throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. J Biomol Struct Dyn 37:2179–2192

    Article  CAS  PubMed  Google Scholar 

  • Beltrao P, Kiel C, Serrano L (2007) Structures in systems biology. Curr Opin Struct Biol 17:378–384

    Article  CAS  PubMed  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  PubMed  Google Scholar 

  • Blencke S, Ullrich A, Daub H (2003) Mutation of threonine 766 in the epidermal growth factor receptor reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors. J Biol Chem 278:15435–15440

    Article  CAS  PubMed  Google Scholar 

  • Blundell TL (1996) Structure-based drug design. Nature 384:23–26

    CAS  PubMed  Google Scholar 

  • Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DC, Mercola D, Vijayan M (1971) Atomic positions in rhombohedral 2-zinc insulin crystals. Nature 231:506–511

    Article  CAS  PubMed  Google Scholar 

  • Blundell T, Dodson G, Hodgkin D, Mercola D (1972) Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv Protein Chem 26:279–402

    Article  CAS  Google Scholar 

  • Blundell T, Sibanda BL, Pearl L (1983) Three-dimensional structure, specificity and catalytic mechanism of renin. Nature 304:273–275

    Article  CAS  PubMed  Google Scholar 

  • Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    Article  CAS  PubMed  Google Scholar 

  • Bodo G, Dintzis H, Kendrew JC, Wyckoff H (1959) The crystal structure of myoglobin, V. A low-resolution three-dimensional Fourier synthesis of sperm-whale myoglobin crystals. Proc R Soc Lond Ser A Math Phys Sci 253:70–102

    CAS  Google Scholar 

  • Caliandro R, Belviso DB, Aresta BM, de Candia M, Altomare CD (2013) Protein crystallography and fragment-based drug design. Future Med Chem 5:1121–1140

    Article  CAS  PubMed  Google Scholar 

  • Campbell SF (2000) Science, art and drug discovery: a personal perspective. Clin Sci 99:255–260

    Article  CAS  Google Scholar 

  • Capila I, Linhardt RJ (2002) Heparin–protein interactions. Angew Chem Int Ed 41:390–412

    Article  CAS  Google Scholar 

  • Carr RA, Congreve M, Murray CW, Rees DC (2005) Fragment-based lead discovery: leads by design. Drug Discov Today 10:987–992

    Article  CAS  PubMed  Google Scholar 

  • Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, Maloney A, Roe SM, Prodromou C, Pearl LH et al (2005) The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg Med Chem Lett 15:3338–3343

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, Rosen N (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8:289–299

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273:239–242

    Article  CAS  PubMed  Google Scholar 

  • Clemons PA (2004) Complex phenotypic assays in high-throughput screening. Curr Opin Chem Biol 8:334–338

    Article  CAS  PubMed  Google Scholar 

  • Cohen P (2002) Protein kinases–the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  CAS  PubMed  Google Scholar 

  • Congreve M, Murray CW, Blundell TL (2005) Keynote review: structural biology and drug discovery. Drug Discov Today 10:895–907

    Article  CAS  PubMed  Google Scholar 

  • Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680

    Article  CAS  PubMed  Google Scholar 

  • Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54:4283–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton WS, Friend SH (2006) Cancer biomarkers–an invitation to the table. Science 312:1165–1168

    Article  CAS  PubMed  Google Scholar 

  • Davies TG, Tickle IJ (2011) Fragment screening using X-ray crystallography. Top Curr Chem 317:33–59

    Article  CAS  Google Scholar 

  • Davis AM, Teague SJ, Kleywegt GJ (2003) Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew Chem Int Ed 42:2718–2736

    Article  CAS  Google Scholar 

  • Dhanaraj V, Dealwis C, Frazao C, Badasso M, Sibanda B, Tickle I, Cooper J, Driessen H, Newman M, Aguilar C (1992) X-ray analyses of peptide–inhibitor complexes define the structural basis of specificity for human and mouse renins. Nature 357:466–472

    Article  CAS  PubMed  Google Scholar 

  • English AC, Done SH, Caves LS, Groom CR, Hubbard RE (1999) Locating interaction sites on proteins: the crystal structure of thermolysin soaked in 2% to 100% isopropanol. Proteins 37:628–640

    Article  CAS  PubMed  Google Scholar 

  • Erlanson DA (2011) Introduction to fragment-based drug discovery. Top Curr Chem 317:1–32

    Article  CAS  Google Scholar 

  • Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M et al (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336

    Article  CAS  PubMed  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  CAS  PubMed  Google Scholar 

  • Fejzo J, Lepre CA, Peng JW, Bemis GW, Murcko MA, Moore JM (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6:755–769

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick PA, Steinmetz A, Ringe D, Klibanov AM (1993) Enzyme crystal structure in a neat organic solvent. Proc Natl Acad Sci 90:8653–8657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry DC, Vassilev LT (2005) Targeting protein-protein interactions for cancer therapy. J Mol Med 83:955–963

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Diaz M, Kunkel TA (2006) Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem Sci 31:206–214

    Article  CAS  PubMed  Google Scholar 

  • Garratt R (2013) Structural biology and cancer. Paper presented at: BMC proceedings

    Google Scholar 

  • Gavira JA (2016) Current trends in protein crystallization. Arch Biochem Biophys 602:3–11

    Article  CAS  PubMed  Google Scholar 

  • Goodford P, St-Louis J, Wootton R (1980) The interaction of human haemoglobin with allosteric effectors as a model for drug-receptor interactions. Br J Pharmacol 68:741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  CAS  PubMed  Google Scholar 

  • Gulzar M, Ali S, Khan FI, Khan P, Taneja P, Hassan MI (2019) Binding mechanism of caffeic acid and simvastatin to the integrin linked kinase for therapeutic implications: a comparative docking and MD simulation studies. J Biomol Struct Dyn 37:4327–4337

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Mohammad T, Dahiya R, Roy S, Noman OMA, Alajmi MF, Hussain A, Hassan MI (2019a) Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: Towards targeted anticancer therapy. Sci Rep 9:18727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Mohammad T, Khan P, Alajmi MF, Hussain A, Rehman MT, Hassan MI (2019b) Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: a targeted approach towards anticancer therapy. Biomed Pharmacother 118:109245

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Khan S, Fakhar Z, Hussain A, Rehman M, AlAjmi MF, Islam A, Ahmad F, Hassan M (2020) Identification of potential inhibitors of calcium/calmodulin-dependent protein kinase IV from bioactive phytoconstituents. Oxidative Med Cell Longev 2020(2020):2094635

    Google Scholar 

  • Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41:856–864

    Article  CAS  PubMed  Google Scholar 

  • Hardy LW, Malikayil A (2003) The impact of structure-guided drug design on clinical agents. Curr Drug Discov 3:15–20

    Google Scholar 

  • Harner MJ, Frank AO, Fesik SW (2013) Fragment-based drug discovery using NMR spectroscopy. J Biomol NMR 56:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan MI, Ahmad F (2011) Structural diversity of class I MHC-like molecules and its implications in binding specificities. In: Advances in protein chemistry and structural biology. Springer, New York, pp 223–270

    Google Scholar 

  • Hassan MI, Waheed A, Grubb JH, Klei HE, Korolev S, Sly WS (2013) High resolution crystal structure of human beta-glucuronidase reveals structural basis of lysosome targeting. PLoS One 8:e79687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillisch A, Pineda LF, Hilgenfeld R (2004) Utility of homology models in the drug discovery process. Drug Discov Today 9:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin DC (1949) The X-ray analysis of the structure of penicillin. Adv Sci 6:85–89

    CAS  PubMed  Google Scholar 

  • Hol WG (1986) Protein crystallography and computer graphics—toward rational drug design. Angew Chem Int Ed 25:767–778

    Article  Google Scholar 

  • Hopkins AL, Keserü GM, Leeson PD, Rees DC, Reynolds CH (2014) The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 13:105–121

    Article  CAS  PubMed  Google Scholar 

  • Hubbard RE (2005) 3D structure and the drug-discovery process. Mol BioSyst 1:391–406

    Google Scholar 

  • James MN, Hsu I-N, Delbaere LT (1977) Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin. Nature 267:808–813

    Article  CAS  PubMed  Google Scholar 

  • Khan FI, Wei D-Q, Gu K-R, Hassan MI, Tabrez S (2016) Current updates on computer aided protein modeling and designing. Int J Biol Macromol 85:48–62

    Article  CAS  PubMed  Google Scholar 

  • Khan P, Rahman S, Queen A, Manzoor S, Naz F, Hasan GM, Luqman S, Kim J, Islam A, Ahmad F et al (2017) Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: in silico and in vitro studies. Sci Rep 7:9470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan P, Queen A, Mohammad T, Smita, Khan NS, Hafeez ZB, Hassan MI, Ali S (2019) Identification of alpha-mangostin as a potential inhibitor of microtubule affinity regulating kinase 4. J Nat Prod 82:2252–2261

    Article  CAS  PubMed  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716

    Article  CAS  PubMed  Google Scholar 

  • Lampson BL, Davids MS (2017) The development and current use of BCL-2 inhibitors for the treatment of chronic lymphocytic leukemia. Curr Hematol Malig Rep 12:11–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsson A, Jansson A, Åberg A, Nordlund P (2011) Efficiency of hit generation and structural characterization in fragment-based ligand discovery. Curr Opin Chem Biol 15:482–488

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Yaffe MB (2016) Protein regulation in signal transduction. Cold Spring Harb Perspect Biol 8:005918

    Article  CAS  Google Scholar 

  • Lesuisse D, Lange G, Deprez P, Bénard D, Schoot B, Delettre G, Marquette J-P, Broto P, Jean-Baptiste V, Bichet P (2002) SAR and X-ray. A new approach combining fragment-based screening and rational drug design: application to the discovery of nanomolar inhibitors of Src SH2. J Med Chem 45:2379–2387

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang H, Assaraf YG, Zhao K, Xu X, **e J, Yang D-H, Chen Z-S (2016) Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 27:14–29

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364

    Article  CAS  PubMed  Google Scholar 

  • Lombardino JG, Lowe JA (2004) The role of the medicinal chemist in drug discovery—then and now. Nat Rev Drug Discov 3:853–862

    Article  CAS  PubMed  Google Scholar 

  • Manzoni F, Wallerstein J, Schrader TE, Ostermann A, Coates L, Akke M, Blakeley MP, Oksanen E, Logan DT (2018) Elucidation of hydrogen bonding patterns in ligand-free, lactose-and glycerol-bound galectin-3C by neutron crystallography to guide drug design. J Med Chem 61:4412–4420

    Article  CAS  PubMed  Google Scholar 

  • Maveyraud L, Mourey L (2020) Protein X-ray crystallography and drug discovery. Molecules 25:1030

    Article  CAS  PubMed Central  Google Scholar 

  • McDonald E, Workman P, Jones K (2006) Inhibitors of the HSP90 molecular chaperone: attacking the master regulator in cancer. Curr Top Med Chem 6:1091–1107

    Article  CAS  PubMed  Google Scholar 

  • Milroy L-G, Grossmann TN, Hennig S, Brunsveld L, Ottmann C (2014) Modulators of protein–protein interactions. Chem Rev 114:4695–4748

    Article  CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  CAS  PubMed  Google Scholar 

  • Mohammad T, Khan FI, Lobb KA, Islam A, Ahmad F, Hassan MI (2019) Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4). J Biomol Struct Dyn 37:1813–1829

    Article  CAS  PubMed  Google Scholar 

  • Mohammad T, Siddiqui S, Shamsi A, Alajmi MF, Hussain A, Islam A, Ahmad F, Hassan MI (2020) Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies. Molecules 25:823

    Article  CAS  PubMed Central  Google Scholar 

  • Morgan-Lappe S, Woods KW, Li Q, Anderson MG, Schurdak ME, Luo Y, Giranda VL, Fesik SW, Leverson JD (2006) RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene 25:1340–1348

    Article  CAS  PubMed  Google Scholar 

  • Murray CW, Verdonk ML, Rees DC (2012) Experiences in fragment-based drug discovery. Trends Pharmacol Sci 33:224–232

    Article  CAS  PubMed  Google Scholar 

  • Murray D, Petrey D, Honig B (2021) Integrating 3D structural information into systems biology. J Biol Chem 296:100562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqvi AA, Mohammad T, Hasan GM, Hassan M (2018) Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr Top Med Chem 18:1755–1768

    Article  PubMed  CAS  Google Scholar 

  • Naz H, Khan P, Tarique M, Rahman S, Meena A, Ahamad S, Luqman S, Islam A, Ahmad F, Hassan MI (2017) Binding studies and biological evaluation of beta-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV. Int J Biol Macromol 96:161–170

    Article  CAS  PubMed  Google Scholar 

  • Naz F, Khan FI, Mohammad T, Khan P, Manzoor S, Hasan GM, Lobb KA, Luqman S, Islam A, Ahmad F (2018a) Investigation of molecular mechanism of recognition between citral and MARK4: a newer therapeutic approach to attenuate cancer cell progression. Int J Biol Macromol 107:2580–2589

    Article  CAS  PubMed  Google Scholar 

  • Naz H, Tarique M, Khan P, Luqman S, Ahamad S, Islam A, Ahmad F, Hassan MI (2018b) Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol Cell Biochem 438:35–45

    Article  CAS  PubMed  Google Scholar 

  • Naz H, Tarique M, Ahamad S, Alajmi MF, Hussain A, Rehman MT, Luqman S, Hassan MI (2019) Hesperidin-CAMKIV interaction and its impact on cell proliferation and apoptosis in the human hepatic carcinoma and neuroblastoma cells. J Cell Biochem 120:15119–15130

    Article  CAS  PubMed  Google Scholar 

  • Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  CAS  PubMed  Google Scholar 

  • Noble ME, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303:1800–1805

    Article  CAS  PubMed  Google Scholar 

  • Nussinov R, Tsai C-J, Shehu A, Jang H (2019) Computational structural biology: successes, future directions, and challenges. Molecules 24:637

    Article  CAS  PubMed Central  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Peplow M (2017) Astex shapes CDK4/6 inhibitor for approval. Nat Biotechnol 35:395–396

    Article  CAS  PubMed  Google Scholar 

  • Perutz D (1997) Structure of haemoglobin. Science 4:169

    Google Scholar 

  • Perutz M, Liquori A, Eirich F (1951) X-ray and solubility studies of the haemoglobin of sickle-cell anaemia patients. Nature 167:929–931

    Article  CAS  PubMed  Google Scholar 

  • Perutz M, Rossmann M, Cullis A, Muirhead H, Will G, North A (1960) Structure of hemoglobin. Paper presented at: Brookhaven Symp Biol

    Google Scholar 

  • Rahuel J, Priestle JP, Grütter MG (1991) The crystal structures of recombinant glycosylated human renin alone and in complex with a transition state analog inhibitor. J Struct Biol 107:227–236

    Article  CAS  PubMed  Google Scholar 

  • Read RJ, Adams PD, Arendall WB III, Brunger AT, Emsley P, Joosten RP, Kleywegt GJ, Krissinel EB, Lütteke T, Otwinowski Z (2011) A new generation of crystallographic validation tools for the protein data bank. Structure 19:1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renaud J-P, Chung C-W, Danielson UH, Egner U, Hennig M, Hubbard RE, Nar H (2016) Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov 15:679–698

    Article  CAS  PubMed  Google Scholar 

  • Roberts AW, Stilgenbauer S, Seymour JF, Huang DC (2017) Venetoclax in patients with previously treated chronic lymphocytic leukemia. Clin Cancer Res 23:4527–4533

    Article  CAS  PubMed  Google Scholar 

  • Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  CAS  PubMed  Google Scholar 

  • Sanger F (1988) Sequences, sequences, and sequences. Annu Rev Biochem 57:1–29

    Article  CAS  PubMed  Google Scholar 

  • Schelling P, Ganten U, Sponer G, Unger T, Ganten D (1980) Components of the renin-angiotensin system in the cerebrospinal fluid of rats and dogs with special consideration of the origin and the fate of angiotensin II. Neuroendocrinology 31:297–308

    Article  CAS  PubMed  Google Scholar 

  • Schlichtkrull J (1958) Insulin crystals. Munksgaard, Copenhagen

    Google Scholar 

  • Scott DE, Coyne AG, Hudson SA, Abell C (2012) Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51:4990–5003

    Article  CAS  PubMed  Google Scholar 

  • Shamim Jairajpuri D, Hussain A, Nasreen K, Mohammad T, Anjum F, Rehman T, Mustafa Hasan G, Alajmi MF, Hassan I (2021) Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Saudi J Biol Sci 28(4):2423–2431

    Article  CAS  Google Scholar 

  • Shokat K, Velleca M (2002) Novel chemical genetic approaches to the discovery of signal transduction inhibitors. Drug Discov Today 7:872–879

    Article  CAS  PubMed  Google Scholar 

  • Subramanian E, Swan I, Liu M, Davies D, Jenkins J, Tickle I, Blundell T (1977) Homology among acid proteases: comparison of crystal structures at 3A resolution of acid proteases from Rhizopus chinensis and Endothia parasitica. Proc Natl Acad Sci 74:556–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surade S, Blundell TL (2012) Structural biology and drug discovery of difficult targets: the limits of ligandability. Chem Biol 19:42–50

    Article  CAS  PubMed  Google Scholar 

  • Thakral NK, Zanon RL, Kelly RC, Thakral S (2018) Applications of powder X-ray diffraction in small molecule pharmaceuticals: achievements and aspirations. J Pharm Sci 107:2969–2982

    Article  CAS  PubMed  Google Scholar 

  • Thomas SE, Mendes V, Kim SY, Malhotra S, Ochoa-Montaño B, Blaszczyk M, Blundell TL (2017) Structural biology and the design of new therapeutics: from HIV and cancer to mycobacterial infections: a paper dedicated to John Kendrew. J Mol Biol 429:2677–2693

    Article  CAS  PubMed  Google Scholar 

  • Tickle I, Sibanda B, Pearl L, Hemmings A, Blundell T (1984) Protein crystallography, interactive computer graphics & drug design X-ray. In: Crystallography Drug Design. Clarendon Press, Oxford, pp 427–444

    Google Scholar 

  • Turnbull PA, Boyd MS (2012) Targeting cancer using fragment based drug discovery. Anti Cancer Agents Med Chem 12:40–48

    Article  CAS  Google Scholar 

  • Vakser IA (2014) Protein-protein docking: from interaction to interactome. Biophys J 107:1785–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Montfort RL, Workman P (2017) Structure-based drug design: aiming for a perfect fit. Essays Biochem 61:431–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Varmus H (2006) The new era in cancer research. Science 312:1162–1165

    Article  CAS  PubMed  Google Scholar 

  • Vénien-Bryan C, Li Z, Vuillard L, Boutin JA (2017) Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery. Acta Crystallogr Sect F 73:174–183

    Article  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  • Wesche H, **ao SH, Young SW (2005) High-throughput screening for protein kinase inhibitors. Comb Chem High Throughput Screen 8:181–195

    Article  CAS  PubMed  Google Scholar 

  • Whittle PJ, Blundell TL (1994) Protein structure-based drug design. Annual review of biophysics and biomolecular structure. Annu Rev Biophys Biomol Struct 23:349–375

    Article  CAS  PubMed  Google Scholar 

  • Workman P (2005a) Drugging the cancer kinome: progress and challenges in develo** personalized molecular cancer therapeutics. Cold Spring Harb Symp Quant Biol 70:499–515

    Article  CAS  PubMed  Google Scholar 

  • Workman P (2005b) Genomics and the second golden era of cancer drug development. Mol BioSyst 1:17–26

    Article  CAS  PubMed  Google Scholar 

  • Wright L, Barril X, Dymock B, Sheridan L, Surgenor A, Beswick M, Drysdale M, Collier A, Massey A, Davies N et al (2004) Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem Biol 11:775–785

    Article  CAS  PubMed  Google Scholar 

  • Wyss DF, Wang Y-S, Eaton HL, Strickland C, Voigt JH, Zhu Z, Stamford AW (2011) Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors. Top Curr Chem 317:83–114

    Article  CAS  Google Scholar 

  • Yap YS, Chiu J, Ito Y, Ishikawa T, Aruga T, Kim SJ, Toyama T, Saeki T, Saito M, Gounaris I et al (2020) Ribociclib, a CDK 4/6 inhibitor, plus endocrine therapy in Asian women with advanced breast cancer. Cancer Sci 111:3313–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit 26:215–239

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Handing KB, Zimmerman MD, Shabalin IG, Almo SC, Minor W (2015) X-ray crystallography over the past decade for novel drug discovery–where are we heading next? Expert Opin Drug Discovery 10:975–989

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MA extends sincere thanks to the Indian Council of Medical Research for financial support (Grant No. 45/6/2020-DDI/BMS).

Declaration of Competing Interest

The authors state that they have no known competing interests that could have appeared to influence the work recognized in this chapter.

Data Availability Statement

The data that help the findings of this study are available in this chapter.

Author’s Contribution Statement

Manzar Alam: Conceptualization, Writing- Original draft preparation, Data curation, Investigation, Methodology. Ahmad Abu Turab Naqvi: Data curation, Investigation, Methodology. Md. Imtaiyaz Hassan: Conceptualization, Writing- Original draft preparation, Investigation, Supervision, project administration.

Funding

This work is funded and supported by the Indian Council of Medical Research (Grant No. 45/6/2020-DDI/BMS) and (ISRM/12(22)/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Imtaiyaz Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alam, M., Naqvi, A.A.T., Hassan, M.I. (2022). Emerging Role of Structural and Systems Biology in Anticancer Therapeutics. In: Singh, S. (eds) Systems Biomedicine Approaches in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1953-4_5

Download citation

Publish with us

Policies and ethics

Navigation