Abstract

Hypothesized on an epidemiological basis soon after the discovery of autoimmunity, microbial triggering of autoimmune diseases is a complex and, despite the great efforts performed, not yet fully elucidated topic of current interest in basic and clinical research. While the causal link between some autoimmune diseases and specific infections has been demonstrated and explained, such association is more controversial in other cases, reflecting our incomplete knowledge of the multiple interactions occurring between microbes and the human immune system, as well as of the mechanisms that may transform a homeostatic and defensive system into a cause of disease and self-destruction. This chapter presents a general overview on the molecular basis of autoimmunity, the natural systems aimed at preventing this undesirable phenomenon, and the mechanisms by which microbial infections, in predisposed individuals and in specific circumstances, may alter the physiological equilibrium of the immune system, leading to autoimmune diseases: molecular mimicry, bystander activation of autoreactive cells, epitope spreading and polyclonal activation, and others, currently less known, which could prove interesting in the next future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alouf JE, Müller-Alouf H (2003) Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Int J Med Microbiol 292:429–440

    Article  CAS  PubMed  Google Scholar 

  • Anderson CC, Chan WF (2004) Mechanisms and models of peripheral CD4 T cell self-tolerance. Front Biosci 9:2947–2963

    Article  CAS  PubMed  Google Scholar 

  • Anderson B, de Jager ML (2020) Natural selection in mimicry. Biol Rev Camb Philos Soc 95:291–304

    Article  PubMed  Google Scholar 

  • Anderton SM, Wraith DC (2002) Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol 2:487–498

    Article  CAS  PubMed  Google Scholar 

  • Anderton SM, Radu CG, Lowrey PA et al (2001) Negative selection during the peripheral immune response to antigen. J Exp Med 193:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates HW (1862) Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans Linnean Soc 23:495–566

    Article  Google Scholar 

  • Benvenga S, Guarneri F (2016) Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord 17:485–498

    Article  CAS  PubMed  Google Scholar 

  • Blank M, Barzilai O, Shoenfeld Y (2007) Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol 32:111–118

    Article  PubMed  Google Scholar 

  • Boyman O (2010) Bystander activation of CD4+ T cells. Eur J Immunol 40:936–939

    Article  CAS  PubMed  Google Scholar 

  • Carrizosa AM, Nicholson LB, Farzan M et al (1998) Expansion by self antigen is necessary for the induction of experimental autoimmune encephalomyelitis by T cells primed with a cross-reactive environmental antigen. J Immunol 161:3307–3314

    CAS  PubMed  Google Scholar 

  • Cornaby C, Gibbons L, Mayhew V, Sloan CS, Welling A, Poole BD (2015) B cell epitope spreading: mechanisms and contribution to autoimmune diseases. Immunol Lett 163:56–68

    Article  CAS  PubMed  Google Scholar 

  • Cossu D, Yokoyama K, Hattori N (2018) Bacteria-host interactions in multiple sclerosis. Front Microbiol 9:2966

    Article  PubMed  PubMed Central  Google Scholar 

  • Croxford JL, Ercolini AM, Degutes M et al (2006) Structural requirements for initiation of cross-reactivity and CNS autoimmunity with a PLP139-151 mimic peptide derived from murine hepatitis virus. Eur J Immunol 36:2671–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cusick MF, Libbey JE, Fu**ami RS (2012) Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol 42:102–111

    Article  CAS  PubMed  Google Scholar 

  • Deacy AM, Gan SK, Derrick JP (2021) Superantigen recognition and interactions: functions, mechanisms and applications. Front Immunol 12:731845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng GM, Tsokos GC (2008) Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation. J Immunol 181:4019–4026

    Article  CAS  PubMed  Google Scholar 

  • Donath J, Landsteiner K (1906) Ueber paroxysmale hamoglobinurie. Z Klin Med 58:173–189

    Google Scholar 

  • Emsley MG (1966) The mimetic significance of Erythrolamprus aesculapii ocellatus Peters from Tobago. Evolution 20:663–664

    Article  CAS  PubMed  Google Scholar 

  • Evans CF, Horwitz MS, Hobbs MV et al (1996) Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J Exp Med 184:2371–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floreani A, Leung PS, Gershwin ME (2016) Environmental basis of autoimmunity. Clin Rev Allergy Immunol 50:287–300

    Article  CAS  PubMed  Google Scholar 

  • Fu**ami RS, Oldstone MB (1989) Molecular mimicry as a mechanism for virus-induced autoimmunity. Immunol Res 8:3–15

    Article  CAS  PubMed  Google Scholar 

  • Fu**ami RS, von Herrath MG, Christen U et al (2006) Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 19:80–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getts DR, Getts MT, King NJC et al (2014) Infectious triggers of T cell autoimmunity. In: Rose NR, Mackay IR (eds) The autoimmune diseases, 5th edn. Academic Press, London, pp 263–274

    Chapter  Google Scholar 

  • Getts DR, Spiteri A, King NJC et al (2020) Microbial infection as a trigger of T cell autoimmunity. In: Rose NR, Mackay IR (eds) The autoimmune diseases, 6th edn. Academic Press, London, pp 363–374

    Chapter  Google Scholar 

  • Giganti G, Atif M, Mohseni Y et al (2021) Treg cell therapy: how cell heterogeneity can make the difference. Eur J Immunol 51:39–55

    Article  CAS  PubMed  Google Scholar 

  • Gourh P, Safran SA, Alexander T et al (2020) HLA and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proc Natl Acad Sci U S A 117:552–562

    Article  CAS  PubMed  Google Scholar 

  • Grossman Z, Paul WE (2001) Autoreactivity, dynamic tuning and selectivity. Curr Opin Immunol 13:687–698

    Article  CAS  PubMed  Google Scholar 

  • Guarneri F, Giuffrida R, Di Bari F et al (2017) Thyroid autoimmunity and lichen. Front Endocrinol (Lausanne) 8:146

    Article  Google Scholar 

  • Hildeman DA, Zhu Y, Mitchell TC et al (2002) Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 14:354–359

    Article  CAS  PubMed  Google Scholar 

  • Illescas-Montes R, Corona-Castro CC, Melguizo-Rodríguez L et al (2019) Infectious processes and systemic lupus erythematosus. Immunology 158:153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii KJ, Koyama S, Nakagawa A et al (2008) Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3:352–363

    Article  CAS  PubMed  Google Scholar 

  • James JA, Robertson JM (2012) Lupus and Epstein-Barr. Curr Opin Rheumatol 24:383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouventin P, Pasteur G, Cambefort JP (1977) Observational learning of baboons and avoidance of mimics: exploratory tests evolution. Evolution 31:214–218

    Article  PubMed  Google Scholar 

  • King NJ, Getts DR, Getts MT et al (2007) Immunopathology of flavivirus infections. Immunol Cell Biol 85:33–42

    Article  CAS  PubMed  Google Scholar 

  • Kuklina EM (2013) Molecular mechanisms of T-cell anergy. Biochemistry (Mosc) 78:144–156

    Article  CAS  Google Scholar 

  • Li J, Yang J, Lu YW et al (2015) Possible role of staphylococcal enterotoxin B in the pathogenesis of autoimmune diseases. Viral Immunol 28:354–359

    Article  CAS  PubMed  Google Scholar 

  • Llewelyn M, Cohen J (2002) Superantigens: microbial agents that corrupt immunity. Lancet Infect Dis 2:156–162

    Article  CAS  PubMed  Google Scholar 

  • Martinelli M, Agmon-Levin N, Amital H et al (2015) Infections and autoimmune diseases: an interplay of pathogenic and protective links. In: Shoenfeld Y, Agmon-Levin N, Rose NR (eds) Infection and autoimmunity, 2nd edn. Academic Press, London, pp 13–23

    Chapter  Google Scholar 

  • Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404

    Article  CAS  PubMed  Google Scholar 

  • Müller F (1878) Ueber die vortheile der mimicry bei schmetterlingen. Zool Anz 1:54–55

    Google Scholar 

  • Nanbo A, Inoue K, Adachi-Takasawa K et al (2002) Epstein-Barr virus RNA confers resistance to interferon-alpha induced apoptosis in Burkitt’s lymphoma. EMBO J 21:954–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldstone MB, Nerenberg M, Southern P et al (1991) Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65:319–331

    Article  CAS  PubMed  Google Scholar 

  • Pacheco Y, Acosta-Ampudia Y, Monsalve DM et al (2019) Bystander activation and autoimmunity. J Autoimmun 103:102301

    Article  CAS  PubMed  Google Scholar 

  • Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Pender MP (2003) Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 24:584–588

    Article  CAS  PubMed  Google Scholar 

  • Plotz PH (2014) Autoimmunity: the history of an idea. Arthritis Rheumatol 66:2915–2920. https://doi.org/https://doi.org/10.1002/art.38796

  • Powell AM, Black MM (2001) Epitope spreading: protection from pathogens, but propagation of autoimmunity? Clin Exp Dermatol 26:427–433

    Article  CAS  PubMed  Google Scholar 

  • Roche PA, Cresswell P (2016) Antigen processing and presentation mechanisms in myeloid cells. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.MCHD-0008-2015

  • Rojas M, Restrepo-Jiménez P, Monsalve DM et al (2018) Molecular mimicry and autoimmunity. J Autoimmun 95:100–123

    Article  CAS  PubMed  Google Scholar 

  • Rose NR (2015) Introduction. In: Shoenfeld Y, Agmon-Levin N, Rose NR (eds) Infection and autoimmunity, 2nd edn. Academic Press, London, pp 1–12

    Google Scholar 

  • Ryan KR, Patel SD, Stephens LA et al (2007) Death, adaptation and regulation: the three pillars of immune tolerance restrict the risk of autoimmune disease caused by molecular mimicry. J Autoimmun 29:262–271

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and nonself. Nat Immunol 6:345–352

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Mikami N, Wing JB et al (2020) Regulatory T cells and human disease. Annu Rev Immunol 38:541–566

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RF, Wiesner KB, Bryan BL et al (1976) HLA-B27 and modified bone formation. Lancet 1:230–231

    Article  CAS  PubMed  Google Scholar 

  • Spaulding AR, Salgado-Pabón W, Pl K et al (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26:422–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speed MP, Ruxton GD, Broom M (2006) Automimicry and the evolution of discrete prey defences. Biol J Linn Soc 87:393–402

    Article  Google Scholar 

  • Sturzl M, Hohenadl C, Zietz C et al (1999) Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi's sarcoma spindle cells. J Natl Cancer Inst 91:1725–1733

    Article  CAS  PubMed  Google Scholar 

  • Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350:1328–1337

    Article  CAS  PubMed  Google Scholar 

  • Torina A, Guggino G, La Manna MP et al (2018) The Janus face of NKT cell function in autoimmunity and infectious diseases. Int J Mol Sci 19:440

    Article  PubMed Central  CAS  Google Scholar 

  • Tough DF, Borrow P, Sprent J (1996) Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272:1947–1950

    Article  CAS  PubMed  Google Scholar 

  • Vella AT, McCormack JE, Linsley PS et al (1995) Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity 2:261–270

    Article  CAS  PubMed  Google Scholar 

  • von Herrath MG, Dockter J, Oldstone MB (1994) How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1:231–242

    Article  Google Scholar 

  • **e Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47:174–192

    Article  CAS  PubMed  Google Scholar 

  • **ng Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4:a006957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–465

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Miao J, Zhu P (2021) Regulatory T cell heterogeneity and therapy in autoimmune diseases. Autoimmun Rev 20:102715

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zha Y, Gajewski TF (2008) Molecular regulation of T-cell anergy. EMBO Rep 9:50–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohouri M, Mehdipour F, Razmkhah M et al (2021) CD4(+)CD25(−)FoxP3(+) T cells: a distinct subset or a heterogeneous population? Int Rev Immunol 40:307–316

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Guarneri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guarneri, F. (2022). The Concept of Infection-Triggered Autoimmunity. In: Dwivedi, M.K., Amaresan, N., Kemp, E.H., Shoenfeld, Y. (eds) Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-1946-6_1

Download citation

Publish with us

Policies and ethics

Navigation