Reviewing the Mechanical Properties of FA and GGBS-Based Geo-polymer Concrete Containing Recycled Concrete Aggregates

  • Conference paper
  • First Online:
Recent Advances in Civil Engineering (CTCS 2021)

Abstract

As in today’s construction industry, concrete is the key component of construction material used worldwide. But the problem of overconsumption of natural resources, heavy emission of CO2, and high consumption of energy while manufacturing are the challenging obstacles in production. Therefore, various studies are performed to get a sustainable and economical construction material that replaces conventional Ordinary Portland Cement (OPC) from industrial wastes like Fly Ash (FA) and Granulated Blast Furnace Slag (GGBS), also using Recycled Concrete Aggregate (RCA) of demolished structures in place of natural coarse and fine aggregate. Hence, the final outcome has resulted in a sustainable construction material that is formed by the alkali activation of source materials like GGBS and FA with a combination of metal hydroxide and silicate known as Geopolymer Concrete (GPC); that is eco-friendly for the environment through suppressing the issues of waste disposal and global warming. This paper presents a literature review on the mechanical properties of FA and GGBS-based GPC. The mechanical properties that have been reviewed include compressive strength, flexural strength, split tensile strength, and modulus of elasticity. The optimum proportion of RCA, aluminosilicate, activating solution, molar concentration, water to binder ratio (w/b), rest period and curing temperature, etc. are reported to generate an efficient mix. Also, various existing gaps and future scope are discussed as per the comprehensive literature survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

OPC:

Ordinary Portland cement

FA:

Fly ash

GGBS:

Ground granulated blast furnace slag

GPC:

Geopolymer concrete

RCA:

Recycled concrete aggregate

w/b:

Water to binder ratio

CC:

Conventional concrete

SCM:

Supplementary cementitious material

CSH:

Calcium silicate hydrate

NaOH:

Sodium hydroxide

Na2SiO3:

Sodium silicate

f ck :

Characteristic compressive strength

f ct :

Split tensile strength

E c :

Elastic modulus

MPa:

Mega Pascal

GPa:

Giga Pascal

References

  1. Ojha A, Chouhan V, Gupta L, Goswami S (2020) A case study on project performance of railway underpass construction project in Jaipur, India. In: AIP conference proceedings 2204.https://doi.org/10.1063/1.5141542

  2. Patankar SV, Ghugal YM, Jamkar SS (2015) Mix design of fly ash based geopolymer concrete. In: Advances structural engineering materials volume three, pp 1619–1634.https://doi.org/10.1007/978-81-322-2187-6_123

  3. Ojha A, Gupta L (2018) Study on the information technology impact questionnaire ITIQ on the construction industry in India, pp 552–557. https://doi.org/10.1061/9780784482025.056

  4. Malhotra VMMP (2002) High-performance, high-volume fly ash concrete: materials, mixture proportioning, properties, construction practice, and case histories. ETDEWEB

    Google Scholar 

  5. https://www.greenspec.co.uk/building-design/aggregates-for-concrete

  6. SC Kou CS Poon HW Wan 2012 Properties of concrete prepared with low-grade recycled aggregates Constr Build Mater 36 881 889 https://doi.org/10.1016/J.CONBUILDMAT.2012.06.060

    Article  Google Scholar 

  7. SW Tabsh AS Abdelfatah 2009 Influence of recycled concrete aggregates on strength properties of concrete Constr Build Mater 23 1163 1167 https://doi.org/10.1016/J.CONBUILDMAT.2008.06.007

    Article  Google Scholar 

  8. R Zaharieva F Buyle-Bodin F Skoczylas E Wirquin 2003 Assessment of the surface permeation properties of recycled aggregate concrete Cem Concr Compos 25 223 232 https://doi.org/10.1016/S0958-9465(02)00010-0

    Article  Google Scholar 

  9. SFU Ahmed 2013 Existence of dividing strength in concrete containing recycled coarse aggregate J Mater Civ Eng 26 784 788 https://doi.org/10.1061/(ASCE)MT.1943-5533.0000864

    Article  Google Scholar 

  10. FUA Shaikh HL Nguyen 2013 Properties of concrete containing recycled construction and demolition wastes as coarse aggregates J Sustain Cem Mater 2 204 217 https://doi.org/10.1080/21650373.2013.833861

    Article  Google Scholar 

  11. C Shi Y Li J Zhang 2016 Performance enhancement of recycled concrete aggregate—a review J Clean Prod 112 466 472 https://doi.org/10.1016/j.jclepro.2015.08.057

    Article  Google Scholar 

  12. G Dimitriou P Savva MF Petrou 2018 Enhancing mechanical and durability properties of recycled aggregate concrete Constr Build Mater 158 228 235 https://doi.org/10.1016/J.CONBUILDMAT.2017.09.137

    Article  Google Scholar 

  13. J Davidovits 1989 Geopolymers and geopolymeric materials J Therm Anal 352 35 429 441 https://doi.org/10.1007/BF01904446

    Article  Google Scholar 

  14. JL Provis RJ Myers CE White 2012 X-ray microtomography shows pore structure and tortuosity in alkali-activated binders Cem Concr Res 42 855 864 https://doi.org/10.1016/J.CEMCONRES.2012.03.004

    Article  Google Scholar 

  15. P Duxson JL Provis GC Lukey JSJ Deventer van 2007 The role of inorganic polymer technology in the development of “green concrete” Cem Concr Res 37 1590 1597 https://doi.org/10.1016/J.CEMCONRES.2007.08.018

    Article  Google Scholar 

  16. P Nath PK Sarker 2015 Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature Cem Concr Compos 55 205 214 https://doi.org/10.1016/J.CEMCONCOMP.2014.08.008

    Article  Google Scholar 

  17. JL Provis 2018 Alkali-activated materials Cem Concr Res 114 40 48 https://doi.org/10.1016/J.CEMCONRES.2017.02.009

    Article  Google Scholar 

  18. P Nath P Sarker 2014 Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition Constr Build Mater 66 163 171 https://doi.org/10.1016/J.CONBUILDMAT.2014.05.080

    Article  Google Scholar 

  19. F Puertas S Martínez-Ramírez S Alonso T Vázquez 2000 Alkali-activated fly ash/slag cements. Strength behaviour and hydration products Cem Concr Res 30 1625 1632 https://doi.org/10.1016/S0008-8846(00)00298-2

    Article  Google Scholar 

  20. El-Hassan H, Ismail N (2017) Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. 7:122–140.https://doi.org/10.1080/21650373.2017.1411296

  21. NK Lee HK Lee 2013 Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature Constr Build Mater 47 1201 1209 https://doi.org/10.1016/J.CONBUILDMAT.2013.05.107

    Article  Google Scholar 

  22. V Sata A Wongsa P Chindaprasirt 2013 Properties of pervious geopolymer concrete using recycled aggregates Constr Build Mater 42 33 39 https://doi.org/10.1016/J.CONBUILDMAT.2012.12.046

    Article  Google Scholar 

  23. MS Reddy P Dinakar BH Rao 2016 A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete Microporous Mesoporous Mater 234 12 23 https://doi.org/10.1016/J.MICROMESO.2016.07.005

    Article  Google Scholar 

  24. Davidovits J, France S (2019) Geopolymer chemistry and sustainable development geopolymer chemistry and sustain able development. The Poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry

    Google Scholar 

  25. MMAB Abdullah LY Ming HC Yong MFM Tahir 2018 Clay-based materials in geopolymer technology Cem Based Mater https://doi.org/10.5772/INTECHOPEN.74438

    Article  Google Scholar 

  26. Sambucci M, Sibai A, Valente M (2021) Recent advances in geopolymer technology. A potential eco-friendly solution in the construction materials industry: a review. J Compos Sci 5:109.https://doi.org/10.3390/JCS5040109

  27. Davidovits J (2002) 30 Years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. Geopolymer 2002 conference, pp 1–16

    Google Scholar 

  28. Joshi RC (2010) Fly ash—production, variability and possible complete utilization. Indian geotechnical conference—GEOtrendz

    Google Scholar 

  29. Rajalakshmi R, Revathi P (2016) Geo-polymerization of recycled concrete aggregate—a review. Int J Adv Eng Res Dev 3. https://doi.org/10.21090/IJAERD030646

  30. N Gupta A Gupta KK Saxena 2021 Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage Mater Today Proc 44 12 16 https://doi.org/10.1016/J.MATPR.2020.05.646

    Article  Google Scholar 

  31. Y Hu Z Tang W Li 2019 Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates Constr Build Mater 226 139 151 https://doi.org/10.1016/J.CONBUILDMAT.2019.07.211

    Article  Google Scholar 

  32. FUA Shaikh 2016 Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates Int J Sustain Built Environ 5 277 287 https://doi.org/10.1016/J.IJSBE.2016.05.009

    Article  Google Scholar 

  33. A Akbarnezhad M Huan S Mesgari A Castel 2015 Recycling of geopolymer concrete Constr Build Mater 101 152 158 https://doi.org/10.1016/J.CONBUILDMAT.2015.10.037

    Article  Google Scholar 

  34. Mesgari S, Akbarnezhad A, **ao JZ (2020) Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: effects on mechanical properties. Constr Build Mater 236.https://doi.org/10.1016/J.CONBUILDMAT.2019.117571

  35. AC Ganesh M Muthukannan 2021 Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength J Clean Prod 282 124543 https://doi.org/10.1016/J.JCLEPRO.2020.124543

    Article  Google Scholar 

  36. Aziz IH, Abdullah MMAB, Mohd Salleh MAA et al (2020) Strength development of solely ground granulated blast furnace slag geopolymers. Constr Build Mater 250.https://doi.org/10.1016/J.CONBUILDMAT.2020.118720

  37. (2016) FHWA research and technology evaluation gusset plates final report

    Google Scholar 

  38. Assi LN, Carter K, Deaver E, Ziehl P (2020) Review of availability of source materials for geopolymer/sustainable concrete. J Clean Prod 263.https://doi.org/10.1016/J.JCLEPRO.2020.121477

  39. G Kürklü 2016 The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar Compos Part B Eng 92 9 18 https://doi.org/10.1016/J.COMPOSITESB.2016.02.043

    Article  Google Scholar 

  40. Y Ling K Wang W Li 2019 Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites Compos Part B Eng 164 747 757 https://doi.org/10.1016/J.COMPOSITESB.2019.01.092

    Article  Google Scholar 

  41. G Habert JB D’Espinose De Lacaillerie N Roussel 2011 An environmental evaluation of geopolymer based concrete production: reviewing current research trends J Clean Prod 19 1229 1238 https://doi.org/10.1016/J.JCLEPRO.2011.03.012

    Article  Google Scholar 

  42. M Malešev V Radonjanin G Broćeta 2014 Properties of recycled aggregate concrete Contemp Mater 2 239 249 https://doi.org/10.7251/COMEN1402239M

    Article  Google Scholar 

  43. K McNeil THK Kang 2013 Recycled concrete aggregates: a review Int J Concr Struct Mater 7 61 69 https://doi.org/10.1007/S40069-013-0032-5

    Article  Google Scholar 

  44. A Ajdukiewicz A Kliszczewicz 2002 Influence of recycled aggregates on mechanical properties of HS/HPC Cem Concr Compos 24 269 279 https://doi.org/10.1016/S0958-9465(01)00012-9

    Article  Google Scholar 

  45. KH Younis FF Jirjees G Khoshnaw B Haidar Ali 2019 Experimental study on performance of recycled aggregate concrete: effect of reactive mineral admixtures Int J Civ Eng Technol 10 2566 2576

    Google Scholar 

  46. KH Younis SM Mustafa 2018 Feasibility of using nanoparticles of SiO2 to improve the performance of recycled aggregate concrete Adv Mater Sci Eng https://doi.org/10.1155/2018/1512830

    Article  Google Scholar 

  47. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2015) Crucial insights on the mix design of alkali-activated cement-based binders. In: Handbook of alkali-activated cements, mortars and concretes, pp 49–73.https://doi.org/10.1533/9781782422884.1.49

  48. M Koushkbaghi P Alipour B Tahmouresi 2019 Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes Constr Build Mater 205 519 528 https://doi.org/10.1016/J.CONBUILDMAT.2019.01.174

    Article  Google Scholar 

  49. Nuaklong P, Jongvivatsakul P, Pothisiri T et al (2020) Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Prod 252.https://doi.org/10.1016/J.JCLEPRO.2019.119797

  50. Saravanakumar P, Saravanakumar P (2018) Strength and durability studies on geopolymer recycled aggregate concrete. Int J Eng Technol 7:370–375. https://doi.org/10.14419/ijet.v7i2.24.12087

  51. HB Le QB Bui L Tang 2021 Geopolymer recycled aggregate concrete: from experiments to empirical models Mater (Basel, Switzerland) 14 1 22 https://doi.org/10.3390/MA14051180

    Article  Google Scholar 

  52. K Neupane 2016 Fly ash and GGBFS based powder-activated geopolymer binders: a viable sustainable alternative of Portland cement in concrete industry Mech Mater 103 110 122 https://doi.org/10.1016/J.MECHMAT.2016.09.012

    Article  Google Scholar 

  53. Assi L, Carter K, Deaver E (Eddie) et al (2018) Sustainable concrete: building a greener future. J Clean Prod 198:1641–1651.https://doi.org/10.1016/J.JCLEPRO.2018.07.123

  54. M Palacios YF Houst P Bowen F Puertas 2009 Adsorption of superplasticizer admixtures on alkali-activated slag pastes Cem Concr Res 39 670 677 https://doi.org/10.1016/J.CEMCONRES.2009.05.005

    Article  Google Scholar 

  55. PR Vora UV Dave 2013 Parametric studies on compressive strength of geopolymer concrete Procedia Eng 51 210 219 https://doi.org/10.1016/j.proeng.2013.01.030

    Article  Google Scholar 

  56. C Jithendra S Elavenil 2019 Role of superplasticizer on GGBS based geopolymer concrete under ambient curing Mater Today Proc 18 148 154 https://doi.org/10.1016/J.MATPR.2019.06.288

    Article  Google Scholar 

  57. WP Triwulan J Jaya Ekaputri 2016 Addition of superplasticizer on geopolymer concrete ARPN J Eng Appl Sci 11 14456 14462

    Google Scholar 

  58. Vahini M, Manjunatha K, Venkatesh, Meti B (2019) Study on effect of superplasticizer on GGBS blended geopolymer concrete. Energy Earth Sci 2:53. https://doi.org/10.22158/EES.V2N2P45

  59. Raju T, Ramaswamy KP, Saraswathy B (2020) Effects of slag and superplasticizers on alkali activated geopolymer paste effects of slag and superplasticizers on alkali activated geopolymer paste. In: IOP conference series earth and environmental science 5th international conference on modeling and simulation in civil engineering, 491. https://doi.org/10.1088/1755-1315/491/1/012042

  60. Demie S, Nuruddin MF, Ahmed MF, Shafiq N (2011) Effects of curing temperature and superplasticizer on workability and compressive strength of self-compacting geopolymer concrete. In: National postgraduate conference—energy and sustainability: exploring the innovative minds, NPC.https://doi.org/10.1109/NATPC.2011.6136362

  61. Patil SG, Manojkumar (2013) Factors influencing compressive strength of geopolymer concrete. IJRET Int J Res Eng Technol 372–375

    Google Scholar 

  62. IR Mithanthaya S Marathe NBS Rao V Bhat 2017 Influence of superplasticizer on the properties of geopolymer concrete using industrial wastes Mater Today Proc 4 9803 9806 https://doi.org/10.1016/J.MATPR.2017.06.270

    Article  Google Scholar 

  63. Kumar S, Gautam PD, Sarath Chandra Kumar B (2019) Effect of alkali activator ratio on mechanical properties of GGBS based geopolymer concrete. Int J Innov Technol Explor Eng 8:947–952. https://doi.org/10.35940/IJITEE.J9539.1081219

  64. Oyebisi S, Ede A, Olutoge F et al (2019) Effects of rest period on the strength performance of geopolymer concrete. IOP Conf Ser Mater Sci Eng 640.https://doi.org/10.1088/1757-899X/640/1/012056

  65. Ramesh V, Srikanth DK (2020) Mechanical properties and mix design of geopolymer concrete—a review. E3S Web Conf 184. https://doi.org/10.1051/E3SCONF/202018401091

  66. Committee A (2014) Building code requirements for structural concrete (ACI 318–14) commentary on building code requirements for structural concrete (ACI 318R-14) an ACI standard and report

    Google Scholar 

  67. Split Tensile Strength of Concrete as per IS 5816 (1999)|Definition, test procedure, apparatus list, formula. https://www.civilalliedgyan.com/2020/03/split-tensile-strength-test-of-concrete.html. Accessed 25 Jul 2021

  68. IS456:2000, Plain and reinforced concrete-code of practice, Bureau of Indian Standard, New Delhi, pp 1–100

    Google Scholar 

  69. Guades EJ, Taduyo OG, Sobreviga MD (2016) Compressive strength of geopolymer concrete: influence of size of gravel. In: 6th International conference on advanced in engineering science and applied mathematics, pp 30–33. https://doi.org/10.15242/IIE.E1216009

  70. Sharma A, Ahmad J (2017) Factors affecting compressive strength of geopolymer concrete-a review. Int Res J Eng Technol 04

    Google Scholar 

  71. Shaikh FUA, Odoh H, Than AB (2015) Effect of nano silica on properties of concretes containing recycled coarse aggregates. 168:68–76.https://doi.org/10.1680/COMA.14.00009

  72. P Nath P Sarker 2014 Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature Cem Concr Compos 55 205 214 https://doi.org/10.1016/J.CEMCONCOMP.2014.08.008

    Article  Google Scholar 

  73. Patankar SV, Jamkar SS, Ghugal YM (2013) Effect of water-to-geopolymer binder ratio on the production of fly ash based geopolymer concrete. Int J Adv Technol Civ Eng 79–83. https://doi.org/10.13140/2.1.4792.1284

  74. Hardjito D, Rangan BV (2005) Development and properties of low-calcium fly ash-based geopolymer concrete. Res Rep GC 1

    Google Scholar 

  75. Z Pan JG Sanjayan BV Rangan 2011 Fracture properties of geopolymer paste and concrete Mag Concr Res 63 763 771 https://doi.org/10.1680/MACR.2011.63.10.763

    Article  Google Scholar 

  76. MNS Hadi NA Farhan MN Sheikh 2017 Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method Constr Build Mater 140 424 431 https://doi.org/10.1016/J.CONBUILDMAT.2017.02.131

    Article  Google Scholar 

  77. SK Das AK Mohapatra AK Rath 2014 Geo-polymer concrete-green concrete for the future-a review Int J Civ Eng Res 5 21 28

    Google Scholar 

  78. M Albitar P Visintin MSM Ali M Drechsler 2015 Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash KSCE J Civ Eng 195 19 1445 1455 https://doi.org/10.1007/S12205-014-1254-Z

    Article  Google Scholar 

  79. Jacob A, Ephraim K, Mohammad A (2020) Properties of metakaolin based geopolymer concrete made with recycled concrete aggregate. Int J Res Innov Appl Sci 57–63

    Google Scholar 

  80. P Topark-Ngarm P Chindaprasirt V Sata 2014 Setting time, strength, and bond of high-calcium fly ash geopolymer concrete J Mater Civ Eng 27 04014198 https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157

    Article  Google Scholar 

  81. VFF Barbosa KJD MacKenzie C Thaumaturgo 2000 Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers Int J Inorg Mater 2 309 317 https://doi.org/10.1016/S1466-6049(00)00041-6

    Article  Google Scholar 

  82. MR Nagral T Ostwal MV Chitawadagi 2014 Effect of curing temperature and curing hours on the properties of geo-polymer concrete Int J Comput Eng Res 04 2250 3005

    Google Scholar 

  83. Jamdade PK (2016) Effect of temperature and time of curing on strength of fly ash based geopolymer concrete. Int J Innov Res Sci Eng Technol (An ISO 5:9269–9274). https://doi.org/10.15680/IJIRSET.2016.0506085

  84. SV Patankar YM Ghugal SS Jamkar 2014 Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar Indian J Mater Sci 2014 1 6 https://doi.org/10.1155/2014/938789

    Article  Google Scholar 

  85. SV Joshi MS Kadu 2012 Role of alkaline activator in development of eco-friendly fly ash based geo polymer concrete Int J Environ Sci Dev 3 417 421 https://doi.org/10.7763/IJESD.2012.V3.258

    Article  Google Scholar 

  86. Gunasekara MPC, Law D, Setunge S (2016) Long term engineering properties of fly ash geopolymer concrete. Proceedings of the 4th international conference on sustainable construction materials and technologies, pp 85–94

    Google Scholar 

  87. Gupta L, Suresh G (2018) Determination of indirect tensile strength of bituminous concrete mix prepared using stone dust and cement as filler materials. Sustain Civ Infrastruct 249–261.https://doi.org/10.1007/978-3-319-61633-9_16

  88. L Gupta A Bellary 2018 Comparative study on the behavior of bituminous concrete mix and warm mix asphalt prepared using lime and Zycotherm as additive Mater Today Proc 5 2074 2081 https://doi.org/10.1016/J.MATPR.2017.09.203

    Article  Google Scholar 

  89. (2004) Eurocode 2: design of concrete structures (EN 1992-1-1:2004). 1

    Google Scholar 

  90. B Singh G Ishwarya M Gupta SK Bhattacharyya 2015 Geopolymer concrete: a review of some recent developments Constr Build Mater 85 78 90 https://doi.org/10.1016/J.CONBUILDMAT.2015.03.036

    Article  Google Scholar 

  91. Hasnaoui A, Ghorbel E, Wardeh G (2019) Comparison between Portland cement concrete and geopolymer concrete based on metakaolin and granulated blast furnace slag with the same binder volume. Acad J Civ Eng 37:127–132

    Google Scholar 

  92. Ahmed HQ, Jaf DK, Yaseen SA (2020) Flexural capacity and behaviour of geopolymer concrete beams reinforced with glass fibre-reinforced polymer bars. Int J Concr Struct Mater

    Google Scholar 

  93. P Nuaklong V Sata P Chindaprasirt 2016 Influence of recycled aggregate on fly ash geopolymer concrete properties J Clean Prod 112 2300 2307 https://doi.org/10.1016/J.JCLEPRO.2015.10.109

    Article  Google Scholar 

  94. P Nuaklong V Sata A Wongsa 2018 Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2 Constr Build Mater 174 244 252 https://doi.org/10.1016/J.CONBUILDMAT.2018.04.123

    Article  Google Scholar 

  95. K Parthiban K Saravana Raja Mohan 2017 Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete Constr Build Mater 133 65 72 https://doi.org/10.1016/J.CONBUILDMAT.2016.12.050

    Article  Google Scholar 

  96. S Bernal R Gutierrez De S Delvasto E Rodriguez 2010 Performance of an alkali-activated slag concrete reinforced with steel fibers Constr Build Mater 24 208 214 https://doi.org/10.1016/J.CONBUILDMAT.2007.10.027

    Article  Google Scholar 

  97. Neville AM (1995) Properties of concrete, 4th ed. Pearson Education Limited

    Google Scholar 

  98. M Etxeberria E Vázquez A Marí 2006 Microstructure analysis of hardened recycled aggregate concrete Mag Concr Res 58 683 690

    Article  Google Scholar 

  99. A Katz 2004 Treatments for the improvement of recycled aggregate J Mater Civ Eng 16 597 603 https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(597)

    Article  Google Scholar 

  100. N Otsuki S Miyazato W Yodsudjai 2003 Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete J Mater Civ Eng 15 443 451 https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)

    Article  Google Scholar 

  101. CS Poon ZH Shui L Lam 2004 Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates Constr Build Mater 18 461 468 https://doi.org/10.1016/J.CONBUILDMAT.2004.03.005

    Article  Google Scholar 

  102. Liu MYJ, Alengaram UJ, Jumaat MZ, Mo KH (2014) Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build Complete 238–245. https://doi.org/10.1016/J.ENBUILD.2013.12.029

  103. Fernandez-Jimenez AM, Palomo A, Lopez-Hombrados C (2006) Engineering properties of alkali-activated fly ash concrete. Aci Mater J 106–112.https://doi.org/10.1061/jsfeaq.0001744

  104. AMA Blash DTVSV Lakshmi 2016 Properties of geopolymer concrete produced by silica fume and ground-granulated blast-furnace slag Int J Sci Res 5 319 323

    Google Scholar 

  105. Sasalatti V, Radhakrishna (2020) Mechanical properties of geopolymer concrete with alternative materials. NBM CW Infra Constr Mag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritik Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saxena, R., Singh, S.P. (2023). Reviewing the Mechanical Properties of FA and GGBS-Based Geo-polymer Concrete Containing Recycled Concrete Aggregates. In: Nandagiri, L., Narasimhan, M.C., Marathe, S. (eds) Recent Advances in Civil Engineering. CTCS 2021. Lecture Notes in Civil Engineering, vol 256. Springer, Singapore. https://doi.org/10.1007/978-981-19-1862-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1862-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1861-2

  • Online ISBN: 978-981-19-1862-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation