Ionic Liquids, Ionic Liquid Nanoparticles, and Nanocomposites: The Future Antibiotics

  • Chapter
  • First Online:
Alternatives to Antibiotics
  • 792 Accesses

Abstract

The chapter presents a detailed review of the ionic liquids (ILs) as well as ionic liquid nanoparticles and nanocomposites as antibacterial agents. Frozen or room temperature ionic liquids are organic salts comprised of inappropriately sized cations and anions which results in frustrated packing and reduced melting point. This class of compound has shown tremendous tunability and huge potential as future antibacterial agents. Researchers in this field have reported a series of quaternary ammonium, imidazolium, pyridium, pyrrolidinium, phosphonium, etc. ionic liquids with appreciable antibacterial properties against a broad spectrum of bacterial strains. Detailed study reveals interesting trends between the structure and antibacterial properties for a given family of ILs. In addition to conventional ILs, certain antibiotics have been converted to ILs for increased activity and improved drug efficacy. Antibacterial ILs and their nanocomposites have also demonstrated biofilm-resistant characteristics proposing their potential as coating materials on biomedical surfaces that are prone to biofilm growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ILs:

Ionic liquids

PIL:

Poly ionic liquid

PILM:

Poly ionic liquid membrane

TSIL:

Task-specific ionic liquid

References

  • Aditya A, Chattopadhyay S, Jha D, Gautam HK, Maiti S, Ganguli M (2018) Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria. ACS Appl Mater Interfaces 10(18):15401–15411

    Article  CAS  PubMed  Google Scholar 

  • Albadawi H, Zhang Z, Altun I, Hu J, Jamal L, Ibsen KN, Tanner EE, Mitragotri S, Oklu R (2021) Percutaneous liquid ablation agent for tumor treatment and drug delivery. Sci Transl Med 13(580):eabe3889

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, Khalid S, Perveen S, Ahmed S, Siddiqui R, Khan NA, Shah MR (2018) Synthesis of 4-(dimethylamino) pyridine propylthioacetate coated gold nanoparticles and their antibacterial and photophysical activity. J Nanobiotechnol 16(1):1–8

    Article  CAS  Google Scholar 

  • Bains D, Singh G, Kaur N, Singh N (2019) Development of biological self-cleaning wound-dressing gauze for the treatment of bacterial infection. ACS Sustain Chem Eng 7(1):969–978

    Article  CAS  Google Scholar 

  • Bains D, Singh G, Kaur N, Singh N (2020) Development of an ionic liquid@ metal-based nanocomposite-loaded hierarchical hydrophobic surface to the aluminum substrate for antibacterial properties. ACS Appl Bio Mater 3(8):4962–4973

    Article  CAS  PubMed  Google Scholar 

  • Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48(6):2739–2751

    Article  CAS  Google Scholar 

  • Borkowski A, Ławniczak Ł, Cłapa T, Narożna D, Selwet M, Pęziak D, Markiewicz B, Chrzanowski Ł (2016) Different antibacterial activity of novel theophylline-based ionic liquids–growth kinetic and cytotoxicity studies. Ecotoxicol Environ Saf (130):54–64

    Google Scholar 

  • Brunel F, Lautard C, Di Giorgio C, Garzino F, Raimundo JM, Bolla JM, Camplo M (2018) Antibacterial activities of mono-, di-and tri-substituted triphenylamine-based phosphonium ionic liquids. Bioorg Med Chem Lett 28(5):926–929

    Article  CAS  PubMed  Google Scholar 

  • Busetti A, Crawford DE, Earle MJ, Gilea MA, Gilmore BF, Gorman SP, Laverty G, Lowry AF, McLaughlin M, Seddon KR (2010) Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chem 12(3):420–425

    Article  CAS  Google Scholar 

  • Cakmakci E, Sen F, Kahraman MV (2019) Isosorbide diallyl based antibacterial thiol–ene photocured coatings containing polymerizable fluorous quaternary phosphonium salt. ACS Sustain Chem Eng 7(12):10605–10615

    Article  CAS  Google Scholar 

  • Carson L, Chau PK, Earle MJ, Gilea MA, Gilmore BF, Gorman SP, McCann MT, Seddon KR (2009) Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem 11(4):492–497

    Article  CAS  Google Scholar 

  • Chang HI, Yang MS, Liang M (2010) The synthesis, characterization and antibacterial activity of quaternized poly (2, 6- dimethyl-1, 4-phenylene oxide) s modified with ammonium and phosphonium salts. React Funct Polym 70(12):944–950

    Article  CAS  Google Scholar 

  • Cho CW, Park JS, Stolte S, Yun YS (2016) Modelling for antimicrobial activities of ionic liquids towards Escherichia coli, Staphylococcus aureus and Candida albicans using linear free energy relationship descriptors. J Hazard Mater 311:168–175

    Article  CAS  PubMed  Google Scholar 

  • Cieniecka-Rosłonkiewicz A, Pernak J, Kubis-Feder J, Ramani A, Robertson AJ, Seddon KR (2005) Synthesis, anti- microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chem 7(12):855–862

    Article  CAS  Google Scholar 

  • Cole MR, Li M, El-Zahab B, Janes ME, Hayes D, Warner IM (2011) Design, synthesis, and biological evaluation of β-lactam antibiotic-based imidazolium-and pyridinium-type ionic liquids. Chem Biol Drug Des 78(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Das S, Bwambok D, El-Zahab B, Monk J, De Rooy SL, Challa S, Li M, Hung FR, Baker GA, Warner IM (2010) Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent nanoGUMBOS. Langmuir 26(15):12867–12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Magut PK, De Rooy SL, Hasan F, Warner IM (2013) Ionic liquid-based fluorescein colorimetric pH nanosensors. RSC Adv 3(43):21054–21061

    Article  CAS  PubMed  Google Scholar 

  • Das S, Paul A, Bera D, Dey A, Roy A, Dutta A, Ganguly D (2021) Design, development and mechanistic insights into the enhanced antibacterial activity of mono and bis-phosphonium fluoresceinate ionic liquids. Mater Today Commun 28:102672

    Article  CAS  Google Scholar 

  • Davis JH Jr (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077

    Article  CAS  Google Scholar 

  • Docherty KM, Kulpa CF Jr (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7(4):185–189

    Article  CAS  Google Scholar 

  • Dong K, Liu X, Dong H, Zhang X, Zhang S (2017) Multiscale studies on ionic liquids. Chem Rev 117(10):6636–6695

    Article  CAS  PubMed  Google Scholar 

  • Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117(10):7132–7189

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Kong L, Ge Q, Zhang W, Zhou X, Zhang L, Wang X (2019) Antibacterial activities of N-alkyl imidazolium-based poly (ionic liquid) nanoparticles. Polym Chem 10(2):209–218

    Article  CAS  Google Scholar 

  • Feder-Kubis J, Tomczuk K (2013) The effect of the cationic structures of chiral ionic liquids on their antimicrobial activities. Tetrahedron 69(21):4190–4198

    Article  CAS  Google Scholar 

  • Feder-Kubis J, Kubicki M, Pernak J (2010) 3-Alkoxymethyl-1-(1R, 2S, 5R)-(−)-menthoxymethylimidazolium salts-based chiral ionic liquids. Tetrahedron Asymmetry 21(21–22):2709–2718

    Article  CAS  Google Scholar 

  • Ferraz R, Silva D, Dias AR, Dias V, Santos MM, Pinheiro L, Prudêncio C, Noronha JP, Petrovski Ž, Branco LC (2020) Synthesis and antibacterial activity of ionic liquids and organic salts based on penicillin g and amoxicillin hydrolysate derivatives against resistant bacteria. Pharmaceutics 12(3):221

    Article  CAS  PubMed Central  Google Scholar 

  • Forero Doria O, Castro R, Gutierrez M, Gonzalez Valenzuela D, Santos L, Ramirez D, Guzman L (2018) Novel alkylimidazolium ionic liquids as an antibacterial alternative to pathogens of the skin and soft tissue infections. Molecules 23(9):2354

    Article  PubMed Central  CAS  Google Scholar 

  • Giernoth R (2010) Task-specific ionic liquids. Angew Chem Int Ed 49(16):2834–2839

    Article  CAS  Google Scholar 

  • Gilmore BF (2011) Antimicrobial ionic liquids. In: Ionic liquids: applications and perspectives. IntechOpen

    Google Scholar 

  • Gilmore BF, Andrews GP, Borberly G, Earle MJ, Gilea MA, Gorman SP, Lowry AF, McLaughlin M, Seddon KR (2013) Enhanced antimicrobial activities of 1-alkyl-3-methyl imidazolium ionic liquids based on silver or copper containing anions. New J Chem 37(4):873–876

    Article  CAS  Google Scholar 

  • Guo J, Xu Q, Zheng Z, Zhou S, Mao H, Wang B, Yan F (2015) Intrinsically antibacterial poly (ionic liquid) membranes: the synergistic effect of anions. ACS Macro Lett 4(10):1094–1098

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Qian Y, Sun B, Sun Z, Chen Z, Mao H, Wang B, Yan F (2019) Antibacterial amino acid-based poly (ionic liquid) membranes: effects of chirality, chemical bonding type, and application for MRSA skin infections. ACS Appl Bio Mater 2(10):4418–4426

    Article  CAS  PubMed  Google Scholar 

  • Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117

    Article  CAS  PubMed  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111(5):3508–3576

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Miao Z, Xu X, Zhang Q (2020) Magnetic iron oxide nanoparticles immobilized with sugar-containing poly (ionic liquid) brushes for efficient trap** and killing of bacteria. ACS Appl Bio Mater 3(6):3664–3672

    Article  CAS  PubMed  Google Scholar 

  • Hossain MI, El-Harbawi M, Noaman YA, Bustam MA, Alitheen NB, Affandi NA, Hefter G, Yin CY (2011) Synthesis and anti-microbial activity of hydroxylammonium ionic liquids. Chemosphere 84(1):101–104

    Article  CAS  Google Scholar 

  • Hurley FH, Wier TP Jr (1951) Electrodeposition of metals from fused quaternary ammonium salts. J Electrochem Soc 98(5):203

    Article  CAS  Google Scholar 

  • Iwai N, Nakayama K, Kitazume T (2011) Antibacterial activities of imidazolium, pyrrolidinium and piperidinium salts. Bioorg Med Chem Lett 21(6):1728–1730

    Article  CAS  PubMed  Google Scholar 

  • Jordan AN, Das S, Siraj N, De Rooy SL, Li M, El-Zahab B, Chandler L, Baker GA, Warner IM (2012) Anion-controlled morphologies and spectral features of cyanine-based nanoGUMBOS–an improved photosensitizer. Nanoscale 4(16):5031–5038

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A, Ikeda T, Endo T (1994) Synthesis and antimicrobial activity of dimethyl-and trimethyl-substituted phosphonium salts with alkyl chains of various lengths. Antimicrob Agents Chemother 38(5):945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolic PE, Siraj N, Hamdan S, Regmi BP, Warner IM (2016) Synthesis and characterization of porphyrin-based GUMBOS and nanoGUMBOS as improved photosensitizers. J Phys Chem C 120(9):5155–5163

    Article  CAS  Google Scholar 

  • Kumar V, Malhotra SV (2009) Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids. Bioorg Med Chem Lett 19(16):4643–4646

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Dai C, Chen B (2014) Gas solubility in ionic liquids. Chem Rev 114(2):1289–1326

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Chen B, Koo YM, MacFarlane DR (2017) Introduction: ionic liquids. Chem Rev 117(10):6633–6635

    Article  PubMed  CAS  Google Scholar 

  • Luque-Ortega JR, Reuther P, Rivas L, Dardonville C (2010) New benzophenone-derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J Med Chem 53(4):1788–1798

    Article  CAS  PubMed  Google Scholar 

  • Magut PK, Das S, Fernand VE, Losso J, McDonough K, Naylor BM, Aggarwal S, Warner IM (2013) Tunable cytotoxicity of rhodamine 6G via anion variations. J Am Chem Soc 135(42):15873–15879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai NL, Koo YM (2016) Computer-aided Design of Ionic Liquids for high cellulose dissolution. ACS Sustain Chem Eng 4(2):541–547

    Article  CAS  Google Scholar 

  • Miskiewicz A, Ceranowicz P, Szymczak M, Bartuś K, Kowalczyk P (2018) The use of liquids ionic fluids as pharmaceutically active substances helpful in combating nosocomial infections induced by Klebsiella Pneumoniae New Delhi strain, Acinetobacter Baumannii and Enterococcus species. Int J Mol Sci 19(9):2779

    Article  PubMed Central  CAS  Google Scholar 

  • Pang L, Yang P, Pang R, Li S (2017) Bis (trifluoromethylsulfonyl) imide-based frozen ionic liquid for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. J Sep Sci 40(16):3311–3317

    Article  CAS  PubMed  Google Scholar 

  • Parshall GW, Shive LW, Cotton FA (1977) Phosphine complexes of rhenium. Inorg Synth 110–112

    Google Scholar 

  • Pendleton JN, Gilmore BF (2015) The antimicrobial potential of ionic liquids: a source of chemical diversity for infection and biofilm control. Int J Antimicrob Agents 46(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Pérez RL, Cong M, Vaughan SR, Ayala CE, Galpothdeniya WI, Mathaga JK, Warner IM (2020) Protein discrimination using a fluorescence-based sensor array of thiacarbocyanine-GUMBOS. ACS Sensors 5(8):2422–2429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pernak J, Chwała P (2003) Synthesis and anti-microbial activities of choline-like quaternary ammonium chlorides. Eur J Med Chem 38(11–12):1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Pernak J, Feder-Kubis J (2005) Synthesis and properties of chiral ammonium-based ionic liquids. Chemistry 11(15):4441–4449

    Article  CAS  PubMed  Google Scholar 

  • Pernak J, Sobaszkiewicz K, Mirska I (2003) Antimicrobial activities of ionic liquids. Green Chem 5:52–56

    Article  CAS  Google Scholar 

  • Pernak J, Sobaszkiewicz K, Foksowicz-Flaczyk J (2004) Ionic liquids with symmetrical dialkoxymethyl-substituted imidazolium cations. Chemistry 10(14):3479–3485

    Article  CAS  PubMed  Google Scholar 

  • Pernak J, Smiglak M, Griffin ST, Hough WL, Wilson TB, Pernak A, Zabielska-Matejuk J, Fojutowski A, Kita K, Rogers RD (2006) Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem 8(9):798–806

    Article  CAS  Google Scholar 

  • Pernak J, Skrzypczak A, Lota G, Frackowiak E (2007) Synthesis and properties of trigeminal tricationic ionic liquids. Chemistry 13(11):3106–3112

    Article  CAS  PubMed  Google Scholar 

  • Pernak J, Borucka N, Walkiewicz F, Markiewicz B, Fochtman P, Stolte S, Steudte S, Stepnowski P (2011) Synthesis, toxicity, biodegradability and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids. Green Chem 13(10):2901–2910

    Article  CAS  Google Scholar 

  • Prusty S, Pal K, Bera D, Paul A, Mukherjee M, Khan F, Dey A, Das S (2021) Enhanced antibacterial activity of a novel biocompatible triarylmethane based ionic liquid-graphene oxide nanocomposite. Colloids Surf B Biointerfaces (203):111729

    Google Scholar 

  • Qin J, Guo J, Xu Q, Zheng Z, Mao H, Yan F (2017) Synthesis of pyrrolidinium-type poly (ionic liquid) membranes for antibacterial applications. ACS Appl Mater Interfaces 9(12):10504–10511

    Article  CAS  PubMed  Google Scholar 

  • Quijada-Maldonado E, Sánchez F, Pérez B, Tapia R, Romero J (2018) Task-specific ionic liquids as extractants for the solvent extraction of molybdenum (VI) from aqueous solution using different commercial ionic liquids as diluents. Ind Eng Chem Res 57(5):1621–1629

    Article  CAS  Google Scholar 

  • Reddy GK, Nancharaiah YV, Venugopalan VP (2017) Long alkyl-chain imidazolium ionic liquids: antibiofilm activity against phototrophic biofilms. Colloids Surf B Biointerfaces (155):487–496

    Google Scholar 

  • Rojas LM, Huerta-Aguilar CA, Tecuapa-Flores ED, Huerta-José DS, Thangarasu P, Sidhu JS, Singh N, Téllez MD (2020) Why ionic liquids coated ZnO nanocomposites emerging as environmental remediates: enhanced photo- oxidation of 4-nitroaniline and encouraged antibacterial behavior. J Mol Liq (319):114107

    Google Scholar 

  • Saraswat J, Wani FA, Dar KI, Rizvi MM, Patel R (2020) Noncovalent conjugates of ionic liquid with antibacterial peptide melittin: an efficient combination against bacterial cells. ACS Omega 5(12):6376–6388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siopa F, Figueiredo T, Frade RF, Neto I, Meirinhos A, Reis CP, Sobral RG, Afonso CA, Rijo P (2016) Choline-based ionic liquids: improvement of antimicrobial activity. ChemistrySelect 1(18):5909–5916

    Article  CAS  Google Scholar 

  • Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Cataldo VA, Dimke T, Stephan I, Guterman R (2020) Antibacterial and degradable thioimidazolium poly (ionic liquid). ACS Sustain Chem Eng 8(22):8419–8424

    Article  CAS  Google Scholar 

  • Taladriz A, Healy A, Flores Perez EJ, Herrero Garcia V, Rios Martinez C, Alkhaldi AA, Eze AA, Kaiser M, De Koning HP, Chana A, Dardonville C (2012) Synthesis and structure–activity analysis of new phosphonium salts with potent activity against African trypanosomes. J Med Chem 55(6):2606–2622

    Article  CAS  PubMed  Google Scholar 

  • Tesfai A, El-Zahab B, Kelley AT, Li M, Garno JC, Baker GA, Warner IM (2009) Magnetic and nonmagnetic nanoparticles from a group of uniform materials based on organic salts. ACS Nano 3(10):3244–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walden PI (1914) Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzenen Salze. Известия Российской академии наук. Серия математическая 8(6):405–422

    Google Scholar 

  • Walkiewicz F, Materna K, Kropacz A, Michalczyk A, Gwiazdowski R, Praczyk T, Pernak J (2010) Multifunctional long- alkyl-chain quaternary ammonium azolate based ionic liquids. New J Chem 34(10):2281–2289

    Article  CAS  Google Scholar 

  • Welton T (2018 Jun) Ionic liquids: a brief history. Biophys Rev 10(3):691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickramanayake S, Hopkinson D, Myers C, Hong L, Feng J, Seol Y, Plasynski D, Zeh M, Luebke D (2014) Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications. J Membr Sci 470:52–59

    Article  CAS  Google Scholar 

  • **e AG, Cai X, Lin MS, Wu T, Zhang XJ, Lin ZD, Tan S (2011) Long-acting antibacterial activity of quaternary phosphonium salts functionalized few-layered graphite. Mater Sci Eng B 176(15):1222–1226

    Article  CAS  Google Scholar 

  • Yue C, Fang D, Liu L, Yi TF (2011) Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J Mol Liq 163(3):99–121

    Article  CAS  Google Scholar 

  • Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, Yan F (2016) Structure–antibacterial activity relationships of imidazolium- type ionic liquid monomers, poly (ionic liquids) and poly (ionic liquid) membranes: effect of alkyl chain length and cations. ACS Appl Mater Interfaces 8(20):12684–12692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges Amity University Kolkata for all the necessary support.

Conflict of Interest

The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S. (2022). Ionic Liquids, Ionic Liquid Nanoparticles, and Nanocomposites: The Future Antibiotics. In: Saha, T., Deb Adhikari, M., Tiwary, B.K. (eds) Alternatives to Antibiotics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1854-4_16

Download citation

Publish with us

Policies and ethics

Navigation