Study on Preparation and Thermal Decomposition Performance of Copper Azide/Graphene Nanocomposite

  • Conference paper
  • First Online:
2021 International Conference on Development and Application of Carbon Nanomaterials in Energetic Materials (ICCN 2021)

Abstract

Carbon material has been designed as substrate to improve the sensitivity characteristics of copper azide (Cu(N3)2), lots of research findings have supported this strategy. However, the thermal decomposition mechanism of Cu(N3)2 nanocomposite has not yet been revealed. In this work, graphene was used as a composite material to prepare a Cu(N3)2/graphene composite primary explosive. Differential scanning calorimeter (DSC) and thermogravimetric-infrared spectroscopy (TG-DSC-FTIR) were used to analyse its thermal decomposition performance. The results showed that the composite of graphene could delay the decomposition point of Cu(N3)2 to 215.49 °C, indicating that the heat release of composite copper azide was concentrated, and the thermal decomposition rate was accelerated. The thermal decomposition reaction kinetic results indicated that the thermal decomposition of Cu(N3)2/graphene accord with the Avrami–Erofeev equation (No. 11 Mechanism Function), and its Apparent Activation Energy (Ea) was 113.42 kJ/mol, and the exponential factor log A was 9.26 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B.L. Evans, A.D. Yoffe, P. Gray, Physics and chemistry of the inorganic azides. Chem. Rev. 59, 515–568 (1959)

    Article  CAS  Google Scholar 

  2. F. Zhang, Y. Wang, D. Fu et al., In-situ preparation of a porous copper based nano-energetic composite and its electrical ignition properties. Propel. Explos. Pyrotech. 38, 41–47 (2013)

    Article  CAS  Google Scholar 

  3. L. Zhang, F. Zhang, Y. Wang, R. Han, J. Chen, R. Zhang, E. Chu, In-situ preparation of copper azide by direct ink writing. Mater. Lett. 238, 130–133 (2019)

    Article  CAS  Google Scholar 

  4. Y. Shen, J. Xu, N. Li et al., A micro-initiator realized by in-situ synthesis of three-dimensional porous copper azide and its ignition performance. J. Chem. Eng. J. 326, 1116–1124 (2017)

    Article  CAS  Google Scholar 

  5. H. Pezous, C. Rossi, M. Sanchez et al., Integration of a MEMS based safe arm and fire device. Sens. Actuators A Phys. 159, 157–167 (2010)

    Article  CAS  Google Scholar 

  6. C. Rossi, D. Esteve, Micropyrotechnics, a new technology for making energetic microsystems: review and prospective. Sens. Actuators A Phys. 120, 297–310 (2005)

    Article  CAS  Google Scholar 

  7. A.B. Gordienko, A.S. Poplavno, Electronic structure of CuN3(I). Phys. Solid State 48(10), 1844–1847 (2006)

    Article  CAS  Google Scholar 

  8. T. Lindblom, H. Malmberg, Analysis of copper azide in ammunition using FTIR, in 12th Symposium on Chemical Problems Connected with the Stability of Explosives (2001)

    Google Scholar 

  9. I. Kabik, S. Uman, Hazards of copper azide fuzes, in Proceedings of Minutes of the 14th Explosive Safety Seminar (US, 1972)

    Google Scholar 

  10. M. Robert, P. Jiri, Primary Explosives (Springer, Berlin, 2013), pp. 71–120

    Google Scholar 

  11. Z.M. Li, M.R. Zhou, T.L. Zhang et al., The facile synthesis of graphene nanoplatelet–lead styphnate composites and their depressed electrostatic hazards. J. Mater. Chem. A 1(41), 12710–12714 (2013)

    Article  CAS  Google Scholar 

  12. J.W. Fronabarger, M.D. Williams, W.B. Sanborn et al., DBX-1—a lead free replacement for lead azide. Propel. Explos. Pyrotech. 36, 541–550 (2011)

    Google Scholar 

  13. V. Thottempudi, H. Gao, J.M. Shreeve, Trinitromethyl-substituted 5-nitro- or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J. Am. Chem. Soc. 133, 6464–6471 (2011)

    Article  CAS  Google Scholar 

  14. B.T. Fedoroff, O.E. Sheffield, S.M. Kaye, Encyclopedia of Explosives and Related Items (Picatinny Arsenal, Dover, NJ, 1983)

    Google Scholar 

  15. M. Zhou, Z. Li, Z. Zhou et al., Antistatic modification of lead styphnate and lead azide for surfactant applications. Propel. Explos. Pyrotech. 38, 569–576 (2013)

    Article  CAS  Google Scholar 

  16. M. Hu, The effect of tetrazene on the reliability of some stab detonator. Initiat. Pyrotechn. 32–34 (2016)

    Google Scholar 

  17. C. Yu, Z. Zheng, W. Zhang et al., Sustainable electrosynthesis of porous CuN3 films for functional energetic chips. ACS Sustain. Chem. Eng. 8, 3969–3975 (2020)

    Article  CAS  Google Scholar 

  18. B. Li, M. Li, Q. Zeng et al., In situ fabrication of monolithic copper azide. J. Energetic Mater. 34, 123–128 (2016)

    Article  CAS  Google Scholar 

  19. Q. Wang, X. Feng, S. Wang et al., Metal-organic framework templated synthesis of copper azide as the primary explosive with low electrostatic sensitivity and excellent initiation ability. J. Adv. Mater. 28, 5837–5843 (2016)

    Google Scholar 

  20. Q. Wang, L. Zhang, W. He et al., High-performance primary explosives derived from copper thiolate cluster-assembled materials for micro-initiating device. Chem. Eng. J. 389, 124455 (2020)

    Google Scholar 

  21. V. Pelletier, S. Bhattacharyya, I. Knoke et al., Copper azide confined inside templated carbon nanotubes. Adv. Funct. Mater. 20, 3168–3174 (2010)

    Article  CAS  Google Scholar 

  22. X. Liu, Y. Hu, H. Wei et al., Energetic films realized by encapsulating copper azide in silicon-based carbon nanotube arrays with higher electrostatic safety. Micromachines 11, 575 (2020)

    Article  Google Scholar 

  23. C. Yu, W. Zhang, S. Guo et al., A safe and efficient liquid-solid synthesis for copper azide films with excellent electrostatic stability. Nano Energy 66, 104135 (2019)

    Google Scholar 

  24. H. Pezous, C. Rossi, M. Sanchez et al., Fabrication, assembly and tests of a MEMS-based safe, arm and fire device. J. Phys. Chem. Solids 71(2), 75–79 (2010)

    Article  CAS  Google Scholar 

  25. Q. Yu, M. Li, Q. Zeng et al., Copper azide prepared by reaction of hollow CuO microspheres with moist HN3 gas. Mater. Lett. 224, 18–21 (2018)

    Article  CAS  Google Scholar 

  26. Q. Yu, M. Li, Q. Zeng et al., Copper azide fabricated by nanoporous copper precursor with proper density. Appl. Surf. Sci. 442, 38–44 (2018)

    Article  CAS  Google Scholar 

  27. G. Zhang, J. Han, L. Yang et al., Theoretical study of the reduction in sensitivity of copper azide following encapsulation in carbon nanotubes. J. Mol. Model. 26, 90 (2020)

    Article  CAS  Google Scholar 

  28. L. Zhang, L. Yang, F. Zhang et al., In situ synthesis of three-dimensional graphene skeleton copper azide with tunable sensitivity performance. Mater. Lett. 279, 128466 (2020)

    Google Scholar 

  29. H. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Article  CAS  Google Scholar 

  30. T. Ozawa, A method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38(11), 1881–1886 (1965)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 China Ordnance Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J. et al. (2022). Study on Preparation and Thermal Decomposition Performance of Copper Azide/Graphene Nanocomposite. In: Gany, A., Fu, X. (eds) 2021 International Conference on Development and Application of Carbon Nanomaterials in Energetic Materials. ICCN 2021. Springer Proceedings in Physics, vol 276. Springer, Singapore. https://doi.org/10.1007/978-981-19-1774-5_23

Download citation

Publish with us

Policies and ethics

Navigation