Electrocatalysis Based on Carbon Composite Catalysts

  • Chapter
  • First Online:
Carbon Composite Catalysts

Abstract

Electrocatalysis can be defined as the heterogeneous catalysis of electrochemical reactions, occuring at the electrode–electrolyte interface and where the electrode plays both the role of electron donor/acceptor and of catalyst. Fuel cells, batteries and capacitors, hydrogen peroxide sensors, glucose sensors, and heavy metal sensors are the electrochemical sensors catalyzed via electrocatalysts such as Pt, Pd, and other metallic catalysts. These noble materials are expensive and thus should be replaced non noble and unexpensive ones. In this context, carbon composite catalysts are promising candidates. In this chapter, carbon composite catalysts and their applications as fuel cell anode and cathode catalysts, sensor materials for hydrogen peroxide sensors, glucose sensors, and heavy metal sensors, and materials for batteries and capacitor are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbag H et al (2020) Effect of preparation technique on the performance of Ni and Ce incorporated modified Alumina catalysts in CO2 reforming of Methane. Catal Lett 150(11):3256–3268

    Article  CAS  Google Scholar 

  2. Cali A et al (2020) Highly durable phosphonated graphene oxide doped polyvinylidene fluoride (PVDF) composite membranes. Int J Hydrogen Energy 45(60):35171–35179

    Article  CAS  Google Scholar 

  3. Yagizatli Y et al (2020) Improved fuel cell properties of Nano-TiO2 doped Poly(Vinylidene fluoride) and phosphonated Poly(Vinyl alcohol) composite blend membranes for PEM fuel cells. Int J Hydrogen Energy 45(60):35130–35138

    Article  CAS  Google Scholar 

  4. Eid K et al (2017) Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for CO-poisoning. Nanoscale 9(47):18881–18889

    Article  CAS  Google Scholar 

  5. Zhang G et al (2011) Preparation of Pd–Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxidation. Appl Catal B 102(3–4):614–619

    Article  CAS  Google Scholar 

  6. Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep Purif 7(4):241–245

    Article  CAS  Google Scholar 

  7. Hecht DS et al (2011) High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22(7):075201

    Article  CAS  Google Scholar 

  8. Bi Z et al (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045

    Article  CAS  Google Scholar 

  9. Singh KP et al (2003) Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind Eng Chem Res 42(9):1965–1976

    Article  CAS  Google Scholar 

  10. Wu G et al (2008) Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochim Acta 53(26):7622–7629

    Article  CAS  Google Scholar 

  11. Sopian K, Daud WRW (2006) Challenges and future developments in proton exchange membrane fuel cells. Renewable Energy 31(5):719–727

    Article  CAS  Google Scholar 

  12. Cao L et al (2006) Novel nanocomposite Pt/RuO2 center dot xH(2)O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Ed 45(32):5315–5319

    Article  CAS  Google Scholar 

  13. Wang YQ et al (2014) Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosens Bioelectron 51:349–355

    Article  CAS  Google Scholar 

  14. Maiyalagan T (2009) Silicotungstic acid stabilized Pt-Ru nanoparticles supported on carbon nanofibers electrodes for methanol oxidation. Int J Hydrogen Energy 34(7):2874–2879

    Article  CAS  Google Scholar 

  15. Ma M et al (2015) Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells. J Power Sources 283:74–83

    Article  CAS  Google Scholar 

  16. Chen MJ et al (2018) Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: a mini review. J Power Sources 375:277–290

    Article  CAS  Google Scholar 

  17. Liu JL et al (2012) Carbon nanotube-based materials for fuel cell applications. Aust J Chem 65(9):1213–1222

    Article  CAS  Google Scholar 

  18. Cheng Y et al (2014) Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells. Appl Catal B 158:140–149

    Article  CAS  Google Scholar 

  19. Saha MS, Kundu A (2010) Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. J Power Sources 195(19):6255–6261

    Article  CAS  Google Scholar 

  20. Prasanna D, Selvaraj V (2016) Development of ternary hexafluoroisopropylidenedianiline/cyclophosphazene/benzidine-disulfonic acid-carbon nanotubes (HFPA/CP/BZD-CNT) composite as a catalyst support for high performance alcohol fuel cell applications. Electrochim Acta 190:668–677

    Article  CAS  Google Scholar 

  21. Lilloja J et al (2020) Nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion exchange membrane fuel cell application. Appl Catal B 272

    Google Scholar 

  22. Lilloja J et al (2021) Transition-metal- and nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion-exchange membrane fuel cells. ACS Catal 11(4):1920–1931

    Article  CAS  Google Scholar 

  23. Higgins DC et al (2012) Titanium nitride-carbon nanotube core-shell composites as effective electrocatalyst supports for low temperature fuel cells. J Mater Chem 22(9):3727–3732

    Article  CAS  Google Scholar 

  24. Reddy ALM, Rajalakshmi N, Ramaprabhu S (2008) Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon 46(1):2–11

    Article  CAS  Google Scholar 

  25. Sahoo M, Vinayan BP, Ramaprabhu S (2014) Platinum-decorated chemically modified reduced graphene oxide-multiwalled carbon nanotube sandwich composite as cathode catalyst for a proton exchange membrane fuel cell. RSC Adv 4(50):26140–26148

    Article  CAS  Google Scholar 

  26. Wang HL et al (2014) Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells. J Power Sources 260:338–348

    Article  CAS  Google Scholar 

  27. Xu PP et al (2014) One-step synthesis of antimony-doped tin oxide/multi-walled carbon nanotube composites: a promising support for platinum catalysts in a direct methanol fuel cell. J Nanopart Res 16(10)

    Google Scholar 

  28. Eftekhari A, Fan Z (2017) Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mater Chem Front 1(6):1001–1027

    Article  CAS  Google Scholar 

  29. Zhou H et al (2003) Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 15(24):2107–2111

    Article  CAS  Google Scholar 

  30. Fang B et al (2008) Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J Phys Chem C 112(2):639–645

    Article  CAS  Google Scholar 

  31. Pradhan BK, Sandle N (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37(8):1323–1332

    Article  CAS  Google Scholar 

  32. Lee HI et al (2009) Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbon via strong metal-support interaction. J Mater Chem 19(33):5934–5939

    Article  CAS  Google Scholar 

  33. Kwon T et al (2010) Carbon-coated mesoporous silica as an electrode material. Microporous Mesoporous Mater 132(3):421–427

    Article  CAS  Google Scholar 

  34. Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47(20):3696–3717

    Article  CAS  Google Scholar 

  35. Wang Q et al (2001) Monodispersed hard carbon spherules with uniform nanopores. Carbon 39(14):2211–2214

    Article  CAS  Google Scholar 

  36. Sevilla M, Fuertes AB, Mokaya R (2011) High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci 4(4):1400–1410

    Article  CAS  Google Scholar 

  37. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    Article  CAS  Google Scholar 

  38. Tintula K et al (2010) Mesoporous carbon and poly (3, 4-ethylenedioxythiophene) composite as catalyst support for polymer electrolyte fuel cells. J Electrochem Soc 157(11):B1679

    Article  CAS  Google Scholar 

  39. Ryoo R et al (2001) Ordered mesoporous carbons. Adv Mater 13(9):677–681

    Article  CAS  Google Scholar 

  40. Marsh H, Rodriguez-Reinonso F (2006) Activated carbon. Elsevier Science & Technology Books, Amsterdam, pp 89–100

    Google Scholar 

  41. Ghimbeu CM et al (2014) Catalyst-free soft-template synthesis of ordered mesoporous carbon tailored using phloroglucinol/glyoxylic acid environmentally friendly precursors. Green Chem 16(6):3079–3088

    Article  CAS  Google Scholar 

  42. Jun S et al (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713

    Article  CAS  Google Scholar 

  43. Novoselov K et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  44. Stankovich S et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  45. Jiang L, Fan Z (2014) Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6(4):1922–1945

    Article  CAS  Google Scholar 

  46. Thomas D et al (2018) Synthesis of graphene nanosheets through spontaneous sodiation process. C J Carbon Res 4(3)

    Google Scholar 

  47. Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Google Scholar 

  48. Caglar A et al (2021) A novel experimental and density functional theory study on palladium and nitrogen doped few layer graphene surface towards glucose adsorption and electrooxidation. J Phys Chem Solids 150

    Google Scholar 

  49. Kou R et al (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11(5):954–957

    Article  CAS  Google Scholar 

  50. Li Y et al (2009) Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11(7):1496–1499

    Article  CAS  Google Scholar 

  51. He D et al (2012) Highly active Platinum nanoparticles on graphene nanosheets with a significant improvement in stability and CO tolerance. Langmuir 28(8):3979–3986

    Article  CAS  Google Scholar 

  52. Sheng Z et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358

    Article  CAS  Google Scholar 

  53. **n Y et al (2012) Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochim Acta 60:354–358

    Article  CAS  Google Scholar 

  54. Caglar A et al (2020) A comparative experimental and density functional study of glucose adsorption and electrooxidation on the Au-graphene and Pt-graphene electrodes. Int J Hydrogen Energy 45(1):490–500

    Article  CAS  Google Scholar 

  55. Zhang W et al (2019) A general approach for fabricating 3D MFe2O4 (M = Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. Nano Energy 57:48–56

    Article  CAS  Google Scholar 

  56. Qu L et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  CAS  Google Scholar 

  57. Yang Z et al (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1):205–211

    Article  CAS  Google Scholar 

  58. Sheng Z et al (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22(2):390–395

    Article  CAS  Google Scholar 

  59. Zarrin H et al (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115(42):20774–20781

    Article  CAS  Google Scholar 

  60. Jha N et al (2011) Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell. Int J Hydrogen Energy 36(12):7284–7290

    Article  CAS  Google Scholar 

  61. Caglar A et al (2019) Few-layer graphene coated on indium tin oxide electrodes prepared by chemical vapor deposition and their enhanced glucose electrooxidation activity. Energy Storage 1(4):e73

    Article  CAS  Google Scholar 

  62. Ulas B et al (2018) Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. J Colloid Interface Sci 532:47–57

    Article  CAS  Google Scholar 

  63. Caglar A et al (2018) A novel central composite design based response surface methodology optimization study for the synthesis of Pd/CNT direct formic acid fuel cell anode catalyst. Int J Hydrogen Energy 43(24):11002–11011

    Article  CAS  Google Scholar 

  64. Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31(2):1481–1487

    Article  CAS  Google Scholar 

  65. Brodie BC (1859) XIII. On the atomic weight of graphite. Philos Trans Roy Soc Lond 149:249–259

    Google Scholar 

  66. Gao W et al (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1(5):403–408

    Article  CAS  Google Scholar 

  67. Pham V et al (2013) Highly efficient reduction of graphene oxide using ammonia borane. Chem Commun 49(59):6665–6667

    Article  CAS  Google Scholar 

  68. Pei S et al (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474

    Article  CAS  Google Scholar 

  69. Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  70. Lei Z, Lu L, Zhao X (2012) The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ Sci 5(4):6391–6399

    Article  CAS  Google Scholar 

  71. Dreyer D et al (2011) Reduction of graphite oxide using alcohols. J Mater Chem 21(10):3443–3447

    Article  CAS  Google Scholar 

  72. Fernandez-Merino M et al (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432

    Article  CAS  Google Scholar 

  73. Chen W, Yan L, Bangal P (2010) Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J Phys Chem C 114(47):19885–19890

    Article  CAS  Google Scholar 

  74. Dey R et al (2012) A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide. Chem Commun 48(12):1787–1789

    Article  CAS  Google Scholar 

  75. Chen D, Li L, Guo L (2011) An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22(32)

    Google Scholar 

  76. Wang Y, Shi Z, Yin J (2011) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3(4):1127–1133

    Article  CAS  Google Scholar 

  77. Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14):5331–5339

    Article  CAS  Google Scholar 

  78. Hou J et al (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384–15402

    Article  CAS  Google Scholar 

  79. Devrim Y, Arıca ED, Albostan A (2018) Graphene based catalyst supports for high temperature PEM fuel cell application. Int J Hydrogen Energy 43(26):11820–11829

    Article  CAS  Google Scholar 

  80. Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113(19):7990–7995

    Google Scholar 

  81. Chen JY, **e P, Zhang ZP (2019) Reduced graphene oxide/polyacrylamide composite hydrogel scaffold as biocompatible anode for microbial fuel cell. Chem Eng J 361:615–624

    Article  CAS  Google Scholar 

  82. Sayed ET et al (2020) Facile and low-cost synthesis route for graphene deposition over cobalt dendrites for direct methanol fuel cell applications. J Taiwan Inst Chem Eng 115:321–330

    Article  CAS  Google Scholar 

  83. Meganathan MD et al (2017) Reduced graphene oxide intercalated Co2C or Co4N nanoparticles as an efficient and durable fuel cell catalyst for oxygen reduction. J Mater Chem A 5(6):2972–2980

    Article  CAS  Google Scholar 

  84. Santoro C et al (2017) Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell. J Power Sources 356:371–380

    Article  CAS  Google Scholar 

  85. Tan JL et al (2017) Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell. Appl Catal A 531:29–35

    Article  CAS  Google Scholar 

  86. Işıkel Şanlı L et al (2017) Engineered catalyst layer design with graphene-carbon black hybrid supports for enhanced platinum utilization in PEM fuel cell. Int J Hydrogen Energy 42(2):1085–1092

    Article  CAS  Google Scholar 

  87. Yang W et al (2019) Graphene oxide-supported zinc cobalt oxides as effective cathode catalysts for microbial fuel cell: High catalytic activity and inhibition of biofilm formation. Nano Energy 57:811–819

    Article  CAS  Google Scholar 

  88. Mashkour M et al (2017) Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell. Prog Nat Sci: Mater Int 27(6):647–651

    Article  CAS  Google Scholar 

  89. Unni SM et al (2015) Carbon nanohorn-derived graphene nanotubes as a platinum-free fuel cell cathode. ACS Appl Mater Interfaces 7(43):24256–24264

    Article  CAS  Google Scholar 

  90. Mohanraju K et al (2015) Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications. J Power Sources 284:383–391

    Article  CAS  Google Scholar 

  91. Huang X (2009) Fabrication and properties of carbon fibers. Materials 2(4):2369–2403

    Article  CAS  Google Scholar 

  92. Cavaliere S et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785

    Article  CAS  Google Scholar 

  93. Sebastián D et al (2012) The influence of carbon nanofiber support properties on the oxygen reduction behavior in proton conducting electrolyte-based direct methanol fuel cells. Int J Hydrogen Energy 37(7):6253–6260

    Article  CAS  Google Scholar 

  94. Geng D et al (2020) Pd x Fe y alloy nanoparticles decorated on carbon nanofibers with improved electrocatalytic activity for ethanol electrooxidation in alkaline media. New J Chem 44(13):5023–5032

    Article  CAS  Google Scholar 

  95. Luong QT et al (2021) An effective strategy for preparing nickel nanoparticles encapsulated in polymer matrix-derived carbon shell with high catalytic activity and long-term durability toward urea electro-oxidation. Mater Chem Front

    Google Scholar 

  96. Gliserol PE (2017) Preliminary study on Pd-based binary catalysts supported with carbon nanofiber for the electrooxidation of glycerol. Malays J Anal Sci 21(3):700–708

    Google Scholar 

  97. Elbasri M et al (2019) Synthesis of carbon nanofibers/poly (para-phenylenediamine)/nickel particles nanocomposite for enhanced methanol electrooxidation. Int J Hydrogen Energy 44(45):24534–24545

    Article  CAS  Google Scholar 

  98. Hu B-C et al (2018) SiO 2-protected shell mediated templating synthesis of Fe–N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ Sci 11(8):2208–2215

    Article  CAS  Google Scholar 

  99. Kaur P et al (2021) Facile and scalable functionalization of carbon nanofibers for oxygen reduction reaction: role of nitrogen precursor and non-ionic dispersant. J Ind Eng Chem 96:307–314

    Article  CAS  Google Scholar 

  100. Lee C-H et al (2019) Palladium on yttrium-embedded carbon nanofibers as electrocatalyst for oxygen reduction reaction in acidic media. Electrochem Commun 106:106516

    Article  CAS  Google Scholar 

  101. Zhong R et al (2020) Atomic Fe-N4 sites on electrospun hierarchical porous carbon nanofibers as an efficient electrocatalyst for oxygen reduction reaction. Chin Chem Lett 31(6):1588–1592

    Article  CAS  Google Scholar 

  102. An G-H, Lee Y-G, Ahn H-J (2018) Multi-active sites of iron carbide nanoparticles on nitrogen@ cobalt-doped carbon for a highly efficient oxygen reduction reaction. J Alloy Compd 746:177–184

    Article  CAS  Google Scholar 

  103. Selvakumar K et al (2019) Electrospun carbon nanofiber sprinkled with Co3O4 as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. ChemistrySelect 4(17):5160–5167

    Article  CAS  Google Scholar 

  104. Jheng L-C et al (2021) Nanocomposite membranes of polybenzimidazole and amine-functionalized carbon nanofibers for high temperature proton exchange membrane fuel cells. RSC Adv 11(17):9964–9976

    Article  CAS  Google Scholar 

  105. Liu X et al (2017) Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application. Int J Hydrogen Energy 42(15):10275–10284

    Article  CAS  Google Scholar 

  106. Ramírez-Herrera CA et al (2021) Enhanced mechanical properties and corrosion behavior of polypropylene/multi-walled carbon nanotubes/carbon nanofibers nanocomposites for application in bipolar plates of proton exchange membrane fuel cells. Int J Hydrogen Energy 46(51):26110–26125

    Article  CAS  Google Scholar 

  107. Shukla A et al (2012) Electrochemical capacitors: technical challenges and prognosis for future markets. Electrochim Acta 84:165–173

    Article  CAS  Google Scholar 

  108. Pandolfo T et al (2013) General properties of electrochemical capacitors. Wiley

    Google Scholar 

  109. Choi HS, Park CR (2014) Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor. J Power Sources 259:1–14

    Article  CAS  Google Scholar 

  110. Halper MS, Ellenbogen JC (2006) Supercapacitors: a brief overview. The MITRE Corporation, McLean, Virginia, USA, p 1

    Google Scholar 

  111. Park S-S, Lee B-T (2004) Anodizing properties of high dielectric oxide films coated on aluminum by sol-gel method. J Electroceram 13(1):111–116

    Article  CAS  Google Scholar 

  112. Costa CU et al (2012) Electrochromic properties of inkjet printed vanadium oxide gel on flexible polyethylene terephthalate/indium tin oxide electrodes. ACS Appl Mater Interfaces 4(10):5266–5275

    Article  CAS  Google Scholar 

  113. Lewandowski A, Świderska A (2003) Electrochemical capacitors with polymer electrolytes based on ionic liquids. Solid State Ionics 161(3–4):243–249

    Article  CAS  Google Scholar 

  114. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498

    Article  Google Scholar 

  115. Cicak K et al (2009) Vacuum-gap capacitors for low-loss superconducting resonant circuits. IEEE Trans Appl Supercond 19(3):948–952

    Article  CAS  Google Scholar 

  116. Barakou F et al (2018) Merits and challenges of a differentiating-integrating measurement methodology with air capacitors for high-frequency transients. In Cigre Session 47

    Google Scholar 

  117. Kaiser CJ (1993) Plastic film capacitors. The capacitor handbook. Springer, pp 41–49

    Chapter  Google Scholar 

  118. Saleem M, Ansari M, Saxena A (2013) Study of standard mica capacitors with respect to time and temperature. Mapan 28(1):25–29

    Article  Google Scholar 

  119. Epstein B, Brooks H (1948) The theory of extreme values and its implications in the study of the dielectric strength of paper capacitors. J Appl Phys 19(6):544–550

    Article  CAS  Google Scholar 

  120. Manoharan MP et al (2013) Flexible glass for high temperature energy storage capacitors. Energ Technol 1(5–6):313–318

    Article  CAS  Google Scholar 

  121. Sakabe Y (1997) Multilayer ceramic capacitors. Curr Opin Solid State Mater Sci 2(5):584–587

    Article  CAS  Google Scholar 

  122. Romero J, Azarian MH, Pecht M (2020) Reliability analysis of multilayer polymer aluminum electrolytic capacitors. Microelectron Reliab 112:113725

    Article  CAS  Google Scholar 

  123. Dehbi A et al (2002) High temperature reliability testing of aluminum and tantalum electrolytic capacitors. Microelectron Reliab 42(6):835–840

    Article  Google Scholar 

  124. Chen J-J et al (2021) A new improved V-square-controlled buck converter with Rail-to-Rail OTA-based current-sensing circuits. IEEE Trans Very Large Scale Integ VLSI Syst

    Google Scholar 

  125. Wang J et al (2020) Recent progress of biomass-derived carbon materials for supercapacitors. J Power Sources 451:227794

    Article  CAS  Google Scholar 

  126. Yadav N, Yadav N, Hashmi S (2020) Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor. J Power Sources 451:227771

    Article  CAS  Google Scholar 

  127. Volfkovich YM (2021) Electrochemical supercapacitors (a review). Russ J Electrochem 57(4):311–347

    Article  CAS  Google Scholar 

  128. Chatterjee DP, Nandi AK (2021) A review on the recent advances in hybrid supercapacitors. J Mater Chem A 9(29):15880–15918

    Article  CAS  Google Scholar 

  129. Kar KK (2020) Handbook of nanocomposite supercapacitor materials II. Springer

    Google Scholar 

  130. Shi Z et al (2021) Boosting capacitance and energy density by construction NiCoO2/CoS2 nanocomposites arrays as pseudocapacitor. J Alloys Compd 160627

    Google Scholar 

  131. Siwal SS et al (2020) Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymers 12(3):505

    Article  CAS  Google Scholar 

  132. Sarif M et al (2021) Enhanced capacitive performance of manganese oxide/mesoporous carbon composite film electrodes. J Electron Mater 50(2):419–431

    Article  CAS  Google Scholar 

  133. Arun T et al (2021) Role of electrolytes on the electrochemical characteristics of Fe3O4/MXene/RGO composites for supercapacitor applications. Electrochim Acta 367:137473

    Article  CAS  Google Scholar 

  134. Ranjithkumar R et al (2020) Investigations and fabrication of Ni(OH)2 encapsulated carbon nanotubes nanocomposites based asymmetrical hybrid electrochemical supercapacitor. J Energy Storage 32:101934

    Article  Google Scholar 

  135. Kanth S et al (2021) Investigations on performance of PEDOT:PSS/V2O5 hybrid symmetric supercapacitor with redox electrolyte. J Appl Polym Sci 138(34):50838

    Article  CAS  Google Scholar 

  136. Soltani M, Beheshti SH (2021) A comprehensive review of lithium ion capacitor: development, modelling, thermal management and applications. Journal of Energy Storage 34:102019

    Article  Google Scholar 

  137. Pozo B et al (2018) Supercapacitor electro-mathematical and machine learning modelling for low power applications. Electronics 7(4):44

    Article  Google Scholar 

  138. Scibioh MA Viswanathan B (eds) Electrolyte materials for supercapacitors. In: Materials for supercapacitor applications. Elsevier, pp 205–314

    Google Scholar 

  139. Fernando J (2021) Electrical double-layer capacitors. In: Kularatna N, Gunawardane K (eds) Energy storage devices for renewable energy-based systems, 2nd edn. Academic Press, Boston, pp 199–237

    Chapter  Google Scholar 

  140. Dubey P et al (2020) Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: challenges and opportunities. Carbon 170:1–29

    Article  CAS  Google Scholar 

  141. An G-H (2020) Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon. Appl Surf Sci 530:147220

    Article  CAS  Google Scholar 

  142. Cheng F et al (2020) Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J Power Sources 450:227678

    Article  CAS  Google Scholar 

  143. Li X et al (2018) Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129:236–244

    Article  CAS  Google Scholar 

  144. Zhou Y et al (2019) Branched carbon nanotube/carbon nanofiber composite for supercapacitor electrodes. Mater Lett 246:174–177

    Article  CAS  Google Scholar 

  145. Wang Q et al (2019) Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem Eng J 371:145–153

    Article  CAS  Google Scholar 

  146. Li J et al (2017) High performance solid-state flexible supercapacitor based on Fe3O4/carbon nanotube/polyaniline ternary films. J Mater Chem A 5(22):11271–11277

    Article  CAS  Google Scholar 

  147. Stoller MD et al (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Article  CAS  Google Scholar 

  148. Yang Z et al (2012) The prospective two-dimensional graphene nanosheets: preparation, functionalization and applications. Nano-Micro Lett 4(1):1–9

    Article  CAS  Google Scholar 

  149. Li J et al (2012) Review of electrochemical capacitors based on carbon nanotubes and graphene. Graphene 1(1):13

    Google Scholar 

  150. Tian J et al (2019) Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl Surf Sci 496:143696

    Article  CAS  Google Scholar 

  151. Manjakkal L et al (2018) Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51:604–612

    Article  CAS  Google Scholar 

  152. Niu H et al (2020) In-situ embedding MOFs-derived copper sulfide polyhedrons in carbon nanotube networks for hybrid supercapacitor with superior energy density. Electrochim Acta 329:135130

    Article  CAS  Google Scholar 

  153. Zou Y et al (2018) Simple synthesis of core-shell structure of Co–Co3O4 @ carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor. Electrochim Acta 261:537–547

    Article  CAS  Google Scholar 

  154. Huang G et al (2017) Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon 125:595–604

    Article  CAS  Google Scholar 

  155. Sun P et al (2019) Uniform MoS2 nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor. Appl Surf Sci 475:793–802

    Article  CAS  Google Scholar 

  156. Bai Y et al (2019) Graphene/Carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. J Alloy Compd 777:524–530

    Article  CAS  Google Scholar 

  157. Song X et al (2019) Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl Surf Sci 487:189–197

    Article  CAS  Google Scholar 

  158. Chen H et al (2017) An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Mater 32(6):592–599

    Article  CAS  Google Scholar 

  159. Phiri J et al (2019) Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4(19):18108–18117

    Article  CAS  Google Scholar 

  160. Zhang S et al (2019) Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochim Acta 294:183–191

    Article  CAS  Google Scholar 

  161. Strauss V et al (2018) A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv Mater 30(8):1704449

    Article  CAS  Google Scholar 

  162. Fan Z et al (2018) Modified MXene/Holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci 5(10):1800750

    Article  CAS  Google Scholar 

  163. Yang S et al (2018) Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv Sci 5(4):1700659

    Article  CAS  Google Scholar 

  164. Li S et al (2020) Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl Surf Sci 503:144090

    Article  CAS  Google Scholar 

  165. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270

    Article  CAS  Google Scholar 

  166. Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51(24):5798–5800

    Article  CAS  Google Scholar 

  167. Horiba T (2014) Lithium-ion battery systems. Proc IEEE 102(6):939–950

    Article  CAS  Google Scholar 

  168. Levi MD et al (2000) Evidence for slow droplet formation during cubic-to-tetragonal phase transition in LixMn2O4 spinel. J Electrochem Soc 147(1):25

    Article  CAS  Google Scholar 

  169. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  170. Aurbach D et al (2004) Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta 50(2–3):247–254

    Article  CAS  Google Scholar 

  171. Goodenough JB, Park K-S (2013) The Li-Ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  Google Scholar 

  172. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[ Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142(5):1431–1435

    Article  CAS  Google Scholar 

  173. Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51(1):79–104

    Article  CAS  Google Scholar 

  174. Manthiram A (2017) An outlook on lithium ion battery technology. ACS Cent Sci 3(10):1063–1069

    Article  CAS  Google Scholar 

  175. Landi BJ et al (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2(6):638–654

    Article  CAS  Google Scholar 

  176. Kasavajjula U, Wang C, Appleby AJ (2007) Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    Article  CAS  Google Scholar 

  177. Zhong S et al (2020) Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem Eng J 395:125054

    Article  CAS  Google Scholar 

  178. Li Y et al (2018) Mesoporous activated carbon from corn stalk core for lithium ion batteries. Chem Phys 506:10–16

    Article  CAS  Google Scholar 

  179. An Y-B et al (2019) Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met 38(12):1113–1123

    Article  CAS  Google Scholar 

  180. Parekh MH et al (2020) In situ mechanistic elucidation of superior Si-C-Graphite Li-Ion battery anode formation with thermal safety aspects. Adv Energy Mater 10(2):1902799

    Article  CAS  Google Scholar 

  181. **ao L et al (2018) Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater 8(20):1703238

    Article  CAS  Google Scholar 

  182. Xu Q et al (2018) SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv Mater 30(25):1707430

    Article  CAS  Google Scholar 

  183. Bin D-S et al (2019) Structural engineering of SnS2/Graphene nanocomposite for high-performance K-ion battery anode. Nano Energy 60:912–918

    Article  CAS  Google Scholar 

  184. Huang Y et al (2019) A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4. J Mater Chem A 7(18):11250–11256

    Article  CAS  Google Scholar 

  185. Jiang Y et al (2019) Sandwich-like SnS2/Graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano 13(8):9100–9111

    Article  CAS  Google Scholar 

  186. Ren W et al (2017) Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Func Mater 27(32):1702116

    Article  CAS  Google Scholar 

  187. Li Z et al (2018) Watermelon-like structured SiOx–TiO2@C nanocomposite as a high-performance Lithium-ion battery anode. Adv Func Mater 28(31):1605711

    Article  CAS  Google Scholar 

  188. Bulut Kopuklu B et al (2021) High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode. Carbon 174:158–172

    Article  CAS  Google Scholar 

  189. Zuo X et al (2019) Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite. J Power Sources 412:93–104

    Article  CAS  Google Scholar 

  190. Ikonen T et al (2020) Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode. Sci Rep 10(1):5589

    Article  CAS  Google Scholar 

  191. Li Y et al (2018) Stable carbon-selenium bonds for enhanced performance in Tremella-like 2D chalcogenide battery anode. Adv Energy Mater 8(23):1800927

    Article  CAS  Google Scholar 

  192. **ang J et al (2017) Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloy Compd 701:870–874

    Article  CAS  Google Scholar 

  193. Kim I-S, Blomgren GE, Kumta PN (2005) Study of electrochemical inactivity of nanocomposites generated using high-energy mechanical milling. J Electrochem Soc 152(1):A248

    Article  CAS  Google Scholar 

  194. Read J et al (2001) SnO2-carbon composites for lithium-ion battery anodes. J Power Sources 96(2):277–281

    Article  CAS  Google Scholar 

  195. Balan L et al (2006) Tin–graphite materials prepared by reduction of SnCl4 in organic medium: synthesis, characterization and electrochemical lithiation. J Power Sources 161(1):587–593

    Article  CAS  Google Scholar 

  196. Yang Z, Shen J, Archer LA (2011) An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries. J Mater Chem 21(30):11092–11097

    Article  CAS  Google Scholar 

  197. Gao S et al (2020) A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chem Int Ed 59(6):2465–2472

    Article  CAS  Google Scholar 

  198. Li Q et al (2021) Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater 20(1):76–83

    Article  CAS  Google Scholar 

  199. Ding J et al (2017) Facile synthesis of carbon/MoO3 nanocomposites as stable battery anodes. J Power Sources 348:270–280

    Article  CAS  Google Scholar 

  200. Tu Z et al (2017) Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode. ACS Appl Mater Interfaces 9(1):439–446

    Article  CAS  Google Scholar 

  201. Wang Y-X et al (2015) Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nat Commun 6(1):8689

    Article  CAS  Google Scholar 

  202. Sun R et al (2015) Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery. ACS Appl Mater Interfaces 7(37):20902–20908

    Article  CAS  Google Scholar 

  203. Choi SH et al (2015) 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Func Mater 25(12):1780–1788

    Article  CAS  Google Scholar 

  204. Wang J et al (2017) Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries. J Solid State Electrochem 21(10):3047–3055

    Article  CAS  Google Scholar 

  205. Wang L et al (2019) Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater 16:434–454

    Article  Google Scholar 

  206. Kirsch J et al (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42(22):8733–8768

    Article  CAS  Google Scholar 

  207. Shukla SK, Govender PP, Tiwari A (2016) Polymeric micellar structures for biosensor technology. In: Iglič A, Kulkarni CV, Rappolt M (eds) Advances in biomembranes and lipid self-assembly. Academic Press, pp 143–161

    Google Scholar 

  208. Cammann K (1977) Bio-Sensors based on ion-selective electrodes. Fresenius J Anal Chem 287:1–9

    Article  CAS  Google Scholar 

  209. Mehrotra P (2016) Biosensors and their applications—a review. J Oral Biol Craniofacial Res 6(2):153–159

    Article  Google Scholar 

  210. Pejcic B, De Marco R, Parkinson G (2006) The role of biosensors in the detection of emerging infectious diseases. Analyst 131(10):1079–1090

    Article  CAS  Google Scholar 

  211. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763

    Article  CAS  Google Scholar 

  212. Wang L, Wang E (2004) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem Commun 6(2):225–229

    Article  CAS  Google Scholar 

  213. Sawant SN (2017) Development of biosensors from biopolymer composites. In: Sadasivuni KK et al (eds) Biopolymer composites in electronics. Elsevier, pp 353–383

    Google Scholar 

  214. Geiszt M, Leto TL (2004) The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 279(50):51715–51718

    Article  CAS  Google Scholar 

  215. Çelik Kazıcı H et al (2018) Microstructured prealloyed Titanium-Nickel powder as a novel nonenzymatic hydrogen peroxide sensor. J Colloid Interface Sci 530:353–360

    Article  CAS  Google Scholar 

  216. Kazici HC et al (2018) Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes, Nanotubes, Carbon Nanostruct 26(3):145–151

    Article  CAS  Google Scholar 

  217. Li J et al (2017) Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. J Mater Sci 52(17):10455–10469

    Article  CAS  Google Scholar 

  218. Jacob C, Winyard PG (2009) Redox signaling and regulation in biology and medicine. Wiley

    Google Scholar 

  219. Posch HE, Wolfbeis OS (1989) Optical sensor for hydrogen peroxide. Microchim Acta 97(1):41–50

    Article  Google Scholar 

  220. He S et al (2014) Non-enzymatic hydrogen peroxide electrochemical sensor based on a three-dimensional MnO2 nanosheets/carbon foam composite. RSC Adv 4(90):49315–49323

    Article  CAS  Google Scholar 

  221. Demir Kivrak H, Aktaş N, Caglar A (2019) Electrochemical production of graphene oxide and its application as a novel hydrogen peroxide sensor. Int J Nano Dimension 10(3):252–259

    Google Scholar 

  222. Caglar A et al (2019) 3-Acrylamidopropyl-trimethylammoniumchloride cationic hydrogel modified graphite electrode and its superior sensitivity to hydrogen peroxide. Fullerenes, Nanotubes, Carbon Nanostruct 27(9):736–745

    Article  CAS  Google Scholar 

  223. ElKaoutit M et al (2008) A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion–Sonogel–Carbon composite. Electrochim Acta 53(24):7131–7137

    Article  CAS  Google Scholar 

  224. Zhang JXJ, Hoshino K (2014) Chapter 4—Electrical transducers: electrochemical sensors and semiconductor molecular sensors. In: Zhang JXJ, Hoshino K (eds) Molecular sensors and nanodevices. William Andrew Publishing, Oxford, pp 169–232

    Chapter  Google Scholar 

  225. Murphy-Pérez E, Arya SK, Bhansali S (2011) Vapor–liquid–solid grown silica nanowire based electrochemical glucose biosensor. Analyst 136(8):1686–1689

    Article  CAS  Google Scholar 

  226. Chen Y et al (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21(21):7604–7611

    Article  CAS  Google Scholar 

  227. Wang J (2008) In vivo glucose monitoring: towards ‘Sense and Act’ feedback-loop individualized medical systems. Talanta 75(3):636–641

    Article  CAS  Google Scholar 

  228. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Google Scholar 

  229. Mehta A et al (2007) A novel multivalent nanomaterial based hydrogen peroxide sensor. Sens Actuators, A 134(1):146–151

    Article  CAS  Google Scholar 

  230. Rahman MM et al (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5):4855–4886

    Article  CAS  Google Scholar 

  231. Ali Kamyabi M et al (2013) A high-performance glucose biosensor using covalently immobilised glucose oxidase on a poly(2,6-diaminopyridine)/carbon nanotube electrode. Talanta 116:801–808

    Article  CAS  Google Scholar 

  232. Min KJ, Kim JH, Park KY (2021) Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment. Sci Total Environ 757

    Google Scholar 

  233. Mukherjee S et al (2021) Sensory development for heavy metal detection: a review on translation from conventional analysis to field-portable sensor. Trends Food Sci Technol 109:674–689

    Article  CAS  Google Scholar 

  234. Srivastava M, Srivastava A, Pandey SK (2020) Suitability of graphene monolayer as sensor for carcinogenic heavy metals in water: a DFT investigation. Appl Surf Sci 517

    Google Scholar 

  235. Alizadeh T et al (2017) An extraordinarily sensitive voltammetric sensor with picomolar detection limit for Pb2+ determination based on carbon paste electrode impregnated with nano-sized imprinted polymer and multi-walled carbon nanotubes. J Environ Chem Eng 5(5):4327–4336

    Article  CAS  Google Scholar 

  236. Bansod B et al (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455

    Article  CAS  Google Scholar 

  237. Akhtar M et al (2020) Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions. Synth Metals 265

    Google Scholar 

  238. Wu WQ et al (2019) Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotoxicol Environ Saf 175:243–250

    Article  CAS  Google Scholar 

  239. Ghanei-Motlagh M et al (2016) A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer. Mater Sci Eng C Mater Biol Appl 63:367–375

    Article  CAS  Google Scholar 

  240. Choi SM et al (2015) A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide. Anal Chim Acta 892:77–84

    Article  CAS  Google Scholar 

  241. Duoc PND et al (2020) A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection. J Hazard Mater 400

    Google Scholar 

  242. Wang MY et al (2019) Preparation of mesoporous silica/carbon quantum dots composite and its application in selective and sensitive Hg2+ detection. Microporous Mesoporous Mater 284:378–384

    Article  CAS  Google Scholar 

  243. Huang H et al (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 852:45–54

    Article  CAS  Google Scholar 

  244. Xuan X, Park JY (2018) A miniaturized and flexible cadmium and lead ion detection sensor based on micro-patterned reduced graphene oxide/carbon nanotube/bismuth composite electrodes. Sensors Actuators, B 255:1220–1227

    Article  CAS  Google Scholar 

  245. Lee S et al (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal Kivrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ulas, B. et al. (2022). Electrocatalysis Based on Carbon Composite Catalysts. In: Jawaid, M., Khan, A. (eds) Carbon Composite Catalysts. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-1750-9_10

Download citation

Publish with us

Policies and ethics

Navigation