Quantum Microwave Measurements

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Metrology and Applications

Abstract

The term “quantum microwave measurement” stands for the measurement of microwave parameters by exploiting the properties of atomic energy levels and related transitions in presence of optical/laser signal. In other words, it can be stated that atoms work like a transducer, converting microwave E-Field and H-Field strengths into observable changes in optical signals. A real-time application of microwave in this domain was first investigated by Christopher and their group, where they have sensed RF electric field strength by measuring the frequency split of electromagnetically induced transparency signal in the presence RF field applied between the Rydberg states (Holloway et al. 2014a). The beauty of this experiment was that the RF E-Field strength could be made directly traceable to Planck’s constant thus reducing the uncertainties associated with other methods of measurement of E-Field using various classical probes. After that, numerous research was done by various researchers and still undergoing utilizing the optical and microwave field interaction with Rydberg atom-based systems, such as broadband RF E-Field sensing, frequency modulation, frequency up-conversion, frequency down-conversion, etc. The interaction of electromagnetic field with atomic system results in specific phenomena such as EIT and ATS (Boller et al. 1991; Marangos 1997; Anisimov et al. 2011), which also form the basis of all these applications. Therefore, in this chapter first we will discuss basic properties of Rydberg atoms, followed by the interaction of electromagnetic field with two-level atomic system. Later, EIT and ATS phenomena in a three-level system and applications will be discussed. Some of the devices based on these phenomena such as electric field sensors, microwave mixers as well as receiver for communication purposes will also be discussed in detail. As Rydberg atoms are the heart of the Quantum Microwave Measurements, different methods of fabrication of atomic vapor cells with their advantages and disadvantages will also be discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Salloum TY (2010) Electromagnetically induced transparency and Autler-Townes splitting: two similar but distinct phenomena in two categories of three-level atomic systems. Phys Rev A 81(5):053836

    Article  ADS  Google Scholar 

  • Agarwal GS (1997) Nature of the quantum interference in electromagnetic-field-induced control of absorption. Phys Rev A 55(3):2467

    Article  ADS  Google Scholar 

  • Anderson DA, Paradis E, Raithel G, Sapiro RE, Holloway CL (2018, August) High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element. In: 2018 11th Glob Symp Millim Waves, GSMM 2018

    Google Scholar 

  • Anderson DA, Sapiro RE, Raithel G (2021) An atomic receiver for AM and FM radio communication. IEEE Trans Antennas Propag 69(5):2455–2462

    Article  ADS  Google Scholar 

  • Anisimov P, Kocharovskaya O (2008) Decaying-dressed-state analysis of a coherently driven three-level Λ system. J Mod Opt 55(19–20):3159–3171

    Article  ADS  Google Scholar 

  • Anisimov PM, Dowling JP, Sanders BC (2011) Objectively discerning Autler-Townes splitting from electromagnetically induced transparency. Phys Rev Lett 107(16):163604

    Article  ADS  Google Scholar 

  • Autler SH, Townes CH (1955) Stark effect in rapidly varying fields. Phys Rev 100(2):703

    Article  ADS  Google Scholar 

  • Beterov I, Ryabtsev II, Tretyakov DB, Entin VM (2009) Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤80. Phys Rev A 79(5):052504

    Article  ADS  Google Scholar 

  • Blum K (2012) Density matrix theory and applications, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 64)

    Google Scholar 

  • Boller KJ, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593

    Article  ADS  Google Scholar 

  • Comparat D, Pillet P (2010) Dipole blockade in a cold Rydberg atomic sample. J Opt Soc Am B 27(6):A208

    Article  ADS  Google Scholar 

  • Davuluri S, Wang Y, Zhu S (2015) Destructive and constructive interference in the coherently driven three-level systems. J Mod Opt 62(13):1091–1097

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Deb B, Kjærgaard N (2018) Radio-over-fiber using an optical antenna based on Rydberg states of atoms. Appl Phys Lett 112(21):211106

    Article  ADS  Google Scholar 

  • Douahi A et al (2007) Vapour microcell for chip scale atomic frequency standard. Electron Lett 43(5):1

    Article  Google Scholar 

  • Eklund EJ, Shkel AM, Knappe S, Donley E, Kitching J (2008) Glass-blown spherical microcells for chip-scale atomic devices. Sensors Actuators, A Phys 143(1):175–180

    Article  Google Scholar 

  • Fleischhauer M, Imamoglu A, Marangos PJ (2005) Electromagnetically induced transparency. Rev Mod Phys 77(2):633–673

    Article  ADS  Google Scholar 

  • Fulton DJ, Shepherd S, Moseley RR, Sinclair BD, Dunn MH (1995) Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems. Phys Rev A 52(3):2302

    Article  ADS  Google Scholar 

  • Gallagher TF (1988) Rydberg atoms. Reports Prog Phys 51(2):143

    Article  ADS  Google Scholar 

  • Gallagher TF, Pillet P (2008) Dipole–dipole interactions of Rydberg atoms. Adv At Mol Opt Phys 56:161–218

    Article  ADS  Google Scholar 

  • Giner L et al (2013) Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models. Phys Rev A 87(1):013823

    Article  ADS  Google Scholar 

  • Gordon JA, Simons MT, Haddab AH, Holloway CL (2019) Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer. AIP Adv 9(4):045030

    Article  ADS  Google Scholar 

  • Hänsch T, Toschek P (1970) Theory of a three-level gas laser amplifier. Zeitschrift für Phys A Hadron Nucl 236(3):213–244

    Article  ADS  Google Scholar 

  • Heckötter J et al (2017) Scaling laws of Rydberg excitons. Phys Rev B 96(12):125142

    Article  ADS  Google Scholar 

  • Holloway CL et al (2014a) Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements. IEEE Trans Antennas Propag 62(12):6169–6182

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Holloway CL et al (2014b) Sub-wavelength imaging and field map** via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl Phys Lett 104(24):244102

    Article  ADS  Google Scholar 

  • Holloway CL et al (2017) Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging. IEEE Trans Electromagn Compat 59(2):717–728

    Article  Google Scholar 

  • Holloway L, Simons MT, Haddab AH, Williams CJ, Holloway MW (2019) A ‘real-time’ guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music. AIP Adv 9(6):065110

    Article  ADS  Google Scholar 

  • Imamoǧlu A, Harris SE (1989) Lasers without inversion: interference of dressed lifetime-broadened states. Opt Lett 14(24):1344–1346

    Article  ADS  Google Scholar 

  • Knapkiewicz P (2018a) Technological assessment of MEMS Alkali vapor cells for atomic references. Micromachines 2019 10(1):25

    Google Scholar 

  • Knapkiewicz P (2018b) Alkali vapor MEMS cells technology toward high-vacuum self-pum** MEMS cell for atomic spectroscopy. Micromachines 9(8):405

    Article  Google Scholar 

  • Knapkiewicz P, Dziuban J, Walczak R, Mauri L, Dziuban P, Gorecki C (2010) MEMS caesium vapour cell for European micro-atomic-clock. Proc Eng 5:721–724

    Article  Google Scholar 

  • Kumar S, Fan H, Kübler H, Sheng J, Shaffer JP (Feb. 2017) Atom-based sensing of weak radio frequency electric fields using homodyne readout. Sci Reports 7(1):1–10

    Google Scholar 

  • Liew LA, Knappe S, Moreland J, Robinson H, Hollberg L, Kitching J (2004) Microfabricated alkali atom vapor cells. Appl Phys Lett 84(14):2694

    Article  ADS  Google Scholar 

  • Liew LA, Moreland J, Gerginov V (2007) Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide. Appl Phys Lett 90(11):114106

    Article  ADS  Google Scholar 

  • Lim J, Gyeol Lee H, Ahn J (2013) Review of cold Rydberg atoms and their applications. J Korean Phys Soc 63(4):867–876

    Article  Google Scholar 

  • Lombardi MA, Heavner TP, Jefferts SR (2007) NIST primary frequency standards and the realization of the SI second. NCSLI Measure 2(4):74–89

    Article  Google Scholar 

  • Lu X et al (2015) Transition from Autler–Townes splitting to electromagnetically induced transparency based on the dynamics of decaying dressed states. J Phys B 48(5):055003

    Article  ADS  Google Scholar 

  • Lukin MD et al (2000) Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys Rev Lett 87(3):37901-1–37901-4

    Google Scholar 

  • Marangos JP (1997) Topical review: electromagnetically induced transparency. J Mod Opt 45:471–503

    Article  ADS  Google Scholar 

  • Meyer DH, Cox KC, Fatemi FK, Kunz PD (2018) Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl Phys Lett 112(21):211108

    Article  ADS  Google Scholar 

  • Mileti SG, Leuenbeger B, Rochat P (2010) CPT atomic clock based on rubidium 85

    Google Scholar 

  • Petremand Y, Schori C, Straessle R, Mileti G, De Rooij N, Thomann P (2010) Low temperature indium-based sealing of microfabricated alkali cells for chip scale atomic clocks

    Google Scholar 

  • Rand SC (2016) Lectures on light: nonlinear and quantum optics using the density matrix. Oxford Scholarship Online: August 2016, Print ISBN-13: 9780198757450

    Google Scholar 

  • Rawat HS (2012, May) The study of Electromagnetically Induced Transparency (EIT) for its potential applications in E-field sensing Ph.D. Thesis. Academy of Scientific and Industrial Research, India

    Google Scholar 

  • Rawat HS, Dubey SK (2020) RF E-field sensing using rydberg atom-based microwave electrometry. MAPAN 35(4):555–562

    Article  Google Scholar 

  • Saffman M, Walker TG, Molmer K (2009) Quantum information with Rydberg atoms. Rev Mod Phys 82(3):2313–2363

    Article  ADS  Google Scholar 

  • Scientists Make First Observation of Unique Rydberg Molecule. https://phys.org/news/2009-04-scientists-unique-rydberg-molecule.html. Accessed 09 Jul 2022

  • Sedlacek JA, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer JP (2012) Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat Phys 8(11):819–824

    Article  Google Scholar 

  • Simons MT, Haddab AH, Gordon JA, Holloway CL (2019) A Rydberg atom-based mixer: measuring the phase of a radio frequency wave. Appl Phys Lett 114(11):114101

    Article  ADS  Google Scholar 

  • Steck DA. Rubidium 87 D Line Data. Available online at http://steck.us/alkalidata (revision 2.2.2, 9 July 2021)

  • Sullivan DB (2001) Time and frequency measurement at NIST: the first 100 years. In: Proc Annu IEEE Int Freq Control Symp, pp. 4–17. https://doi.org/10.1109/FREQ.2001.956152

  • Tan C, Huang G (2014) Crossover from electromagnetically induced transparency to Autler-Townes splitting in open ladder systems with Doppler broadening. JOSA B 31(4):704–715

    Article  ADS  Google Scholar 

  • The chip-scale atomic clock-recent development progress. https://www.researchgate.net/publication/228601154_The_chip-scale_atomic_clock-recent_development_progress. Accessed 03 May 2022

  • Vecchio F, Venkatraman V, Shea H, Maeder T, Ryser P (2010) Dispensing and hermetic sealing Rb in a miniature reference cell for integrated atomic clocks. Proc Eng 5:367–370

    Article  Google Scholar 

  • Woetzel S, Talkenberg F, Scholtes T, Ijsselsteijn R, Schultze V, Meyer HG (2013) Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings. Surf. Coatings Technol 221:158–162

    Article  Google Scholar 

  • Woetzel S, Kessler E, Diegel M, Schultze V, Meyer HG (2014) Low-temperature anodic bonding using thin films of lithium-niobate-phosphate glass. J Micromech Microeng 24(9):095001

    Article  Google Scholar 

  • Yang B, Chen D, Li J, Wang YP, Jia Z (2018) Cavity-enhanced microwave electric field measurement using Rydberg atoms. JOSA B 35(9):2272–2277

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Kesh Dubey .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aneja, Y., Thakran, M., Sharma, A.K., Rawat, H.S., Dubey, S.K. (2023). Quantum Microwave Measurements. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_79-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_79-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Quantum Microwave Measurements
    Published:
    06 June 2023

    DOI: https://doi.org/10.1007/978-981-19-1550-5_79-2

  2. Original

    Quantum Microwave Measurements
    Published:
    29 March 2023

    DOI: https://doi.org/10.1007/978-981-19-1550-5_79-1

Navigation