Plant and Environment Co-evolution in Permian-Triassic Transition

  • Chapter
  • First Online:
Plants and Palynomorphs around the Permian-Triassic Boundary of South China

Part of the book series: New Records of the Great Dying in South China ((NRGDSC))

  • 361 Accesses

Abstract

Late Permian the Lo**ian to Early Triassic the Induan, the palaeofloral successions are continuous and complete in the South and North China blocks. From the Late Cisuralian (Early Permian) to the middle of the Lo**ian, North and South China, both located in the equatorial domain, sheltered a homogeneous “Cathaysian Palaeoflora” resulting from a Cisuralian southern extension and diversification from the Northern “cradle” of Cathaysian plants to the South. The progressive changes in the two regional floral successions due to environmental changes result from the northward drifting of the North China block, while the South China block remained in the sub-equatorial domain. These different palaeogeographic histories leaded to the paradox that most of the Cathaysian plant taxa started to disappear as early as in the middle Permian on the North China Block, “cradle” on which the first Cathaysian plants appeared around the Carboniferous – Permian transition, migrating afterwards to the South China! The last “refugium” for these plants, until the latest Permian was the south China Block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Algeo TJ, Twichett RJ (2010) Anomalous early Triassic sediment fluxes due to elevated weathering rates. J Earth Sci 38(11):1023–1026

    Google Scholar 

  • Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ (2011) Terrestrial–marine teleconnections in the collapse and rebuilding of early Triassic marine ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 308:1–11

    Article  Google Scholar 

  • Beerling D, Woodward FI (2001) Vegetation and the terrestrial carbon cycle: modelling the first 400 million years. Cambridge University Press, pp 1–405

    Google Scholar 

  • Benca JP, Duijnstee I, Looy CV (2018) UVB–induced forest sterility: implications of Ozone shield failure in Earth’s largest extinction. Sci Adv 4(2):e1700618

    Article  Google Scholar 

  • Benton MJ, Newell AJ (2014) Impacts of global warming on Permian-Triassic terrestrial ecosystems. Gond Res 25(4):1308–1337

    Article  Google Scholar 

  • Benton MJ, Tverdokhlebov VP, Surkov MV (2004) Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432(7013):97–100

    Article  Google Scholar 

  • Berthelin M, Broutin J, Kerp H, Crasquin-Soleau S, Platel JP, Roger J (2003) The Oman Gharif mixed paleoflora: a useful tool for testing Permian Pangea reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 196(1):85–98

    Article  Google Scholar 

  • Black BA, Neely RR, Lamarque J, Elkins-Tanton LT, Kiehl JT, Shields CA, Mills MJ, Bardeen C (2018) Systemic swings in End-Permian climate from Siberian traps carbon and sulfur outgassing. Nat Geosci 11(12):949–954

    Article  Google Scholar 

  • Blomenkemper P, Kerp H, Hamad AA, Dimichele WA, Bomfleur B (2018) A hidden cradle of plant evolution in Permian tropical lowlands. Science 362:1414–1416

    Article  Google Scholar 

  • Boyce CK, Dimichele WA (2016) Arborescent lycopsid productivity and lifespan: constraining the possibilities. Rev Palaeobot Palynol 227:97–110

    Article  Google Scholar 

  • Burgess SD, Bowring S, Shen SZ (2014) High-precision timeline for earth’s most severe extinction. Proc Natl Acad Sci USA 111(9):3316–3321

    Article  Google Scholar 

  • Burgess SD, Muirhead JD, Bowring SA (2017) Initial pulse of Siberian traps sills as the trigger of the End-Permian mass extinction. Nature Commun 8:164

    Article  Google Scholar 

  • Chen ZQ, ** YG, Shi GR (1998) Permian transgression-regression sequences and sea-level changes of South China. Proc R Soc Victoria 110:345–368

    Google Scholar 

  • Chu DL, Grasby SE, Song HJ, Corso JD, Wang Y, Mather TA, Wu Y, Song HY, Shu WC, Tong JN, Wignall PB (2020) Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology 48:288–292

    Article  Google Scholar 

  • Feng Z, Wei HB, Guo Y, Bomfleur B (2018) A conifer-dominated Early Triassic flora from Southwest China. Sci Bull 63:1462–1463

    Article  Google Scholar 

  • Fluteau F, Besse J, Broutin J, Ramstein G (2001) The Late Permian climate: what can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude? Palaeogeogr Palaeoclimatol Palaeoecol 167:39–71

    Article  Google Scholar 

  • Golonka J, Ross JI, Scotese CR (1994) Phanerozoic paleogeographic and paleoclimatic modeling maps. In: Embry AF et al (eds) Pangea: global environments and resources. Canadian Society of Petroleum Geologists Memoir 17:1–47

    Google Scholar 

  • Greb SF, Dimichele WA, Gastaldo RA (2006) Evolution and importance of wetlands in earth history. In: Greb SF, DiMichele WA (eds) Wetlands through time. Geological Society of America (special Paper) 399, pp 1–40

    Google Scholar 

  • He XL, Liang DS, Sheng SZ (1996) The permian floras from Jiangxi, China. China University of Minings Press, Xuzhou, pp 1–201

    Google Scholar 

  • Kaiho K, Saito R, Ito K, Miyaji T, Chen ZQ (2016) Effects of soil erosion and anoxic-euxinic ocean in the Permian-Triassic marine crisis. Heliyon 2(8):137

    Article  Google Scholar 

  • Kidder DL, Worsley TR (2003) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol 203:207–237

    Google Scholar 

  • Li XX (ed) (1995) Fossil floras in China through the geological ages (English edition). Guangdong Science and Technology Press, Guangzhou, pp 1–695

    Google Scholar 

  • Li XX, Yao ZQ (1980) Permian coal-bearing formations in South China. J Stratigr 4:241–255 (In Chinese)

    Google Scholar 

  • Li H, Yu JX, McElwain JC, Yiotis C, Chen ZQ (2019) Reconstruction of atmospheric CO2 concentration during the late Changhsingian based on fossil conifers from the Dalong Formation in South China. Palaeogeogr Palaeoclimatol Palaeoecol 519:37–48

    Article  Google Scholar 

  • Meng FS (1992) Fossil plants. In: Yichang Institute of Geology and Mineral Resources et al (eds) Geology of hainan island, 1. Stratigraphy and Palaeology. Geological Publishing House, Bei**g, pp 166–170, 175–183 (in Chinese)

    Google Scholar 

  • Muttoni G, Mattei M, Balini M, Zanchi A, Gaetani M, Berra F (2009) The drift history of Iran from the Ordovician to the Triassic. Geol Soc London (special Publications) 312(1):7–29

    Article  Google Scholar 

  • Ouyang S (1982) Upper Permian and Lower Triassic palynomophs from Eastern Yunnan. Can J Earth Sci 19:68–80

    Article  Google Scholar 

  • Ouyang S, Zhu HC (2007) Query the assumption of “End-Permian Fungal Spike Event”, with special reference to the permo-triassic transitional palynofloras. Acta Palaeontologica Sinica 46(4):394–410

    Google Scholar 

  • Peng Y, Shi GR (2009) Life crises on land across the Permian-Triassic boundary in South China. Global Planet Change 65:155–165

    Article  Google Scholar 

  • Peng YQ, Yu JX, Gao YQ, Yang FQ (2006) Palynological assemblages of non-marine rocks at the Permian-Triassic boundary, western Guizhou and eastern Yunnan, South China. J Asian Earth Sci 28:291–305

    Article  Google Scholar 

  • Pott C, McLoughlin S, Lindström A (2010) Late Palaeozoic foliage from China displays affinities to Cycadales rather than to Bennettitales necessitating a re−evaluation of the Palaeozoic Pterophyllum species. Acta Palaeontol Pol 55(1):157–168

    Article  Google Scholar 

  • Qu LF (1990) Palynological assemblages of Middle and Late Triassic in Sangzhi, Hunan, and their stratigraphical significance. J Stratigr Paleotol 23:81–95 (In Chinese with English abstract)

    Google Scholar 

  • Qu LF, Wang Z (1986) Triassic spores and pollen. In: Permian and Triassic strata and fossil assemblages in the Dalongkou area of Jimsar, **njiang. Geol. Mem., Series 2(3). Geological Publishing House, Bei**g, pp 113–173 (in Chinese with English summary)

    Google Scholar 

  • Retallack GJ (1975) The life and time of a Triasic lycopod. Alcheringa 1:3–29

    Article  Google Scholar 

  • Retallack GJ (2011) Exceptional fossil preservation during CO2 greenhouse crises? Palaeogeogr Palaeoclimatol Palaeoecol 307:59–74

    Article  Google Scholar 

  • Retallack GJ (2013) Permian and Triassic greenhouse crises. Gondwana Res 24:90–103

    Article  Google Scholar 

  • Riel N, Jaillard E, Martelat J-E, Guillot S, Braun J (2018) Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin. J S Am Earth Sci 81:78–86

    Article  Google Scholar 

  • Roscher M, Stordal F, Svensen H (2011) The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeogr Palaeoclimatol Palaeoecol 309:186–200

    Article  Google Scholar 

  • Saito R, Kaiho K, Oba M, Takahashi S, Chen ZQ, Tong J (2013) A terrestrial vegetation turnover in the middle of the Early Triassic. Global Planet Change 105:152–159

    Article  Google Scholar 

  • Saito R, Oba M, Kaiho K, Schaeffer P, Adam P, Takahashi S, Nara FE, Chen ZQ, Tong JN, Tsuchiya N (2014) Extreme euxinia just prior to the Middle Triassic biotic recovery from the latest Permian mass extinction. Org Geochem 73:113–122

    Article  Google Scholar 

  • Shen WJ, Sun YG, Lin YT, Liu DH, Chai PX (2011) Evidence for wildfire in the Meishan Section and implications for Permian-Triassic events. Geochim Cosmochim Acta 27:1992–2006

    Article  Google Scholar 

  • Shen J, Algeo TJ, Hu Q, Xu GZ, Zhou L, Feng QL (2013) Volcanism in South China during the Late Permian and its relationship to marine ecosystem and environmental changes. Global Planet Change 105:121–134

    Article  Google Scholar 

  • Shen J, Schoepfer SD, Feng Q, Song HY (2015) Marine productivity changes during the End-Permian crisis and Early Triassic recovery. Earth-Sci Rev 149:136–162

    Article  Google Scholar 

  • Shen J, Chen J, Algeo TJ, Yuan SL, Feng Q, Yu J, Zhou L, O’Connell B, Planavsky NJ (2019) Evidence for a prolonged Permian-Triassic Extinction interval from global marine mercury records. Nat Commun 10:1563

    Article  Google Scholar 

  • Shi X (2016) Fossil woods and environmental changes during the Permian–Triassic transition in Northwest China. PhD thesis China University of Geosciences–Wuhan/Université Pierre et Marie Curie-Paris 6, France, 182 p

    Google Scholar 

  • Sun YD, Joachimski MM, Wignall PB, Yan CB, Chen YL, Jiang HS, Wang LN, Lai XL (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338(6105):366–370

    Article  Google Scholar 

  • Vajda V, McLoughlin S, Mays C, Frank TD, Fielding CR, Tevywa A, Lehsten V, Bocking M, Nicoll RS (2020) End-Permian (252 Mya) deforestation, wildfires and flooding - An ancient biotic crisis with lessons for the present. Earth Planet Sci Lett 529:115875

    Article  Google Scholar 

  • Visscher H, Looy CV, Collinson ME, Brinkhuis H, van Konijnenburg van Cittert JH, Kürschner WM, Sephton MA (2004) Environmental mutagenesis during the End-Permian ecological crisis. Proc Natl Acad Sci USA 101(35):12952–12956

    Google Scholar 

  • Wang ZQ (1983) New materials of fossil plants from Shiqianfeng Group in N China. Bull Geol Soc Tian**g 1(2):27–80 (in Chinese)

    Google Scholar 

  • Wang ZQ, Wang LX (1982) A new species of the lycopsid Pleuromeia from the Early Triassic of Shanxi China and its ecology. Palaeontology 25(1):215–225

    Google Scholar 

  • Wang ZQ (1985) Palaeovegetation and plate tectonics: palaeophyto geography of North China during Permian and Triassic times. Palaeogeography, Palaeoclimate, Palaeoecology, 49(1):25–45

    Google Scholar 

  • Wang ZQ, Wang LX (1986) Late Permian fossil plants from the lower part of the Shiqianfeng (Shihchienfeng) Group in North China. Bull Tian** Instit Geol Mineral Resour 15:1–80 (in Chinese with English abstract)

    Google Scholar 

  • Wang ZQ (1989) Permian gigantic palaeobotanical events in North China. Acta Palaeont Sinica, 28(3):314–337

    Google Scholar 

  • Wang ZQ, Wang LX (1990) Late Early Triassic fossil plants from upper part of the Shiqianfeng Group in North China. Shanxi Geol 14(1):23–40 (in Chinese with English abstract)

    Google Scholar 

  • Ward PD, Montgomery DR, Smith RMH (2000) Altered river morphology in South Africa related to the Permian-Triassic extinction. Science 289:1740–1743

    Article  Google Scholar 

  • Wignall PB, Chu D, Hilton JM, Dal Corso J, Wu Y, Wang Y, Atkinson J, Tong J (2020) Death in the shallows: The record of Permo-Triassic mass extinction in paralic settings, southwest China. Global Planet Change 189(2020):103176

    Article  Google Scholar 

  • **e SC, Pancost R, Yin H, Wang H, Evershed R (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494–497

    Article  Google Scholar 

  • **e SC, Pancost RD, Huang JH, Wignall PB, Yu JX, Tang X, Chen L, Huang XY, Lai XL (2007) Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology 35:1083–1086

    Article  Google Scholar 

  • Xu GZ, Feng QL, Deconinck JF, Shen J, Zhao TY, Young AL (2017) High-resolution clay mineral and major elemental characterization of a Permian-Triassic terrestrial succession in southwestern China: diagenetic and paleoclimatic/paleoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 481:77–93

    Article  Google Scholar 

  • Yan Z, Shao L, Glasspool LJ, Wang J, Wang X, Wang H (2019) Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event. Int J Coal Geol 207:75–83

    Article  Google Scholar 

  • Yang W, Feng Q, Liu YQ, Tabor N, Miggins D, Crowley J, Lin JY, Thomas S (2010) Depositional environments and cyclo- and chronostratigraphy of Uppermost carboniferous-Lower triassic fluvial-lacustrine deposits, Southern bogda mountains, NW China–a terrestrial paleoclimatic record of Mid-Latitude NE Pangea. Global Planet Change 73:15–113

    Article  Google Scholar 

  • Yao ZQ, Liu LJ, Rothwell WG et al (2000) Szecladia new genus, a Late Permian conifer with multiveined leaves from South China. J Paleontol 74:524–531

    Article  Google Scholar 

  • Yin HF, Wu SB, Du YS, Peng YQ (1999) South China defined as part of Tethyan archipelagic ocean system. Earth Sci J China Univ Geosci 24:1–12 (in Chinese with English abstract)

    Google Scholar 

  • Yin HF, Song HJ (2013) Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition. Sci China: Earth Sci 56:1791–1803 (In Chinese with English abstract)

    Article  Google Scholar 

  • Yu JX, Peng YQ, Zhang SX, Yang FQ, Zhao QM, Huang QS (2007) Terrestrial events across the Permian- Triassic boundary along the Yunnan-Guizhou border, SW China. Global Planet Change 55:193–208

    Article  Google Scholar 

  • Yu JX, Broutin J, Huang QS, Grauvogel-Stamm L (2010) Annalepis, a pioneering lycopsid genus in the recovery of the Triassic land flora in South China. C R Palevol 9:479–486

    Article  Google Scholar 

  • Yu JX, Broutin J, Chen ZQ, Shi X, Li H, Chu DL, Huang QS (2015) Vegetation changeover across the Permian-Triassic boundary in Southwest China extinction, survival, recovery and palaeoclimate: a critical review. Earth-Sci Rev 149:203–224

    Article  Google Scholar 

  • Yu JX (2008) Floras (macro- and microfloras) and evolutionary dynamics across the Permian–Triassic boundary along Guizhou and Yunnan border, South China. PhD Thesis, University Geosciences China Wuhan–University Pierre et Marie Curie, Paris 6, 220 p

    Google Scholar 

  • Zhang KX, Yu JX, Lin QX, **g YL, Chen B (2004) Palynological assemblage in section d of Meishan, Changxing, Zhejiang and its significance of global correlation. Earth Sci J China Univ Geosci 29(3):253–262

    Google Scholar 

  • Zhou ZY, Li BX (1979) A preliminary study of the Early Triassic plants from the Qionghai District Hainan Island. Acta Palaeotol Sin 18(5):444–466 (In Chinese with English abstract)

    Google Scholar 

  • Ziegler AM, Eshel G, Rees PM, Rothfus TA, Rowley D, Sunderlin D (2003) Tracing the tropics across land and sea: Permian to present. Lethaia 36:227–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J., Shi, X., Xu, Z., Li, H., Lu, Z. (2022). Plant and Environment Co-evolution in Permian-Triassic Transition. In: Yu, J., Broutin, J., Lu, Z. (eds) Plants and Palynomorphs around the Permian-Triassic Boundary of South China. New Records of the Great Dying in South China. Springer, Singapore. https://doi.org/10.1007/978-981-19-1492-8_8

Download citation

Publish with us

Policies and ethics

Navigation