Viral Behaviors on Materials and the International Standard Between Materials and Microbial/Viral Environments

  • Chapter
  • First Online:
Studies to Combat COVID-19 using Science and Engineering
  • 174 Accesses

Abstract

In this chapter, we surveyed the differences of viral behaviors inside and outside of our bodies. Then, we introduced an international standard to evaluate the viral activity on various materials. This evaluation technique is the combination of a film covering method developed for antibacterial evaluation of materials by SIAA (Society of International Sustaining Growth of Antimicrobial Articles) in Japan and the conventional plaque assay. However, this evaluation process provides visualization to the researchers and engineers who use it. From this viewpoint, we would say the method is intuitive, rapid, relatively inexpensive, and user-friendly. It is used in industry to evaluate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, G., & Bishop, P. (2015). Microbiology—and infection control for health professional (6th ed.). Pearson.

    Google Scholar 

  2. Nelson, D. L., & Cox, M. M. (2008). Lehninger principles of biochemistry (5th ed.). W. H. Freeman.

    Google Scholar 

  3. Lostroh, P. (2019). Molecular and cellular biology of viruses (Vol. 523). Garland Science.

    Book  Google Scholar 

  4. Djellabi, R., Basilico, N., Delbue, S., D’Alessandro, S., Parapini, S., Cerrato, G., Laurenti, E., Falletta, E., & Bianchi, C. L. (2021). Oxidative Inactivation of SARS-CoV-2 on Photoactive AgNPs@TiO2 Ceramic Tiles. Int. J. Mol. Sci., 22, 8836. https://doi.org/10.3390/ijms22168836.

    Google Scholar 

  5. Butot, S., Baert, L., & Zuber, S. (2021). Assessment of antiviral coatings for high-touch surfaces by using human coronaviruses HCoV-229E and SARS-CoV-2. Applied and Environmental Microbiology, 87(19), e01098–e01021.

    Article  CAS  PubMed Central  Google Scholar 

  6. Thraenhart, O., Jursch, C., & Buozzi, V. B. (2021). Testing of the antiviral equipped product “Argentum 20 a-Base” against the Bovine Coronavirus (Bocv) at 25°C –Evaluation of the virucidal activity against the Bovine Coronavirus (S379 Riems) using the quantitative carrier test according to ISO 21702: 2019. (Excerpt from the Test Report Ter_Eur-09_181220_Bocv). Eurofins Co.

    Google Scholar 

  7. Fu, H., & Gray, K. A. (2021). The key to maximizing the benefits of antimicrobial and self-cleaning coatings is to fully determine their risks. Current Opinion in Chemical Engineering, 34, 100761.

    Article  Google Scholar 

  8. Tatsuma, T., Nakakido, M., Ichinohe, T., Kuroiwa, Y., Tomioka, K., Liu, C., Wakihara, T., et al. (2021). Inactivation of novel coronavirus and alpha variant by photo-renewable CuxO/TiO2 nanocomposites. Cambridge University Press.

    Book  Google Scholar 

  9. Hong, S. G., Lee, Y. K., Yim, J. H., Chun, J., & Lee, H. K. (2008). Sanguibacter antarcticus sp. nov., isolated from Antarctic Sea sand. International Journal of Systematic and Evolutionary Microbiology, 58(1), 50–52.

    Article  CAS  PubMed  Google Scholar 

  10. Falcó, I., Randazzo, W., Sánchez, G., Vilarroig, J., Climent, J., Chiva, S., Navarro-Laboulais, J., et al. (2021). Experimental and CFD evaluation of ozone efficacy against coronavirus and enteric virus contamination on public transport surfaces. Journal of Environmental Chemical Engineering, 9(5), 106217.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li, Z., Qiao, D., Xu, Y., Zhou, E., Yang, C., Yuan, X., Wang, F., et al. (2021). Cu-bearing high-entropy alloys with excellent antiviral properties. Journal of Materials Science & Technology, 84, 59–64.

    Article  CAS  Google Scholar 

  12. Kanematsu, H., Kawai, R., & Barry, D. M. (2021). Measuring virus infectivity on material surfaces: Various methods are available to evaluate the behavior of viruses on material surfaces, an important area of research for determining how long a virus can live on an inanimate object, and learning how to design and develop advanced antiviral materials. Advanced Materials & Processes, 179(5), 28–31.

    Google Scholar 

  13. Govind, V., Bharadwaj, S., Sai Ganesh, M. R., Vishnu, J., Shankar, K. V., Shankar, B., & Rajesh, R. (2021). Antiviral properties of copper and its alloys to inactivate COVID-19 virus: A review. Biometals, 34(6), 1217–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Botequim, D., Maia, J., Lino, M. M. F., Lopes, L. M. F., Simões, P. N., Ilharco, L. M., & Ferreira, L. (2012). Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. Langmuir, 28(20), 7646–7656.

    Article  CAS  PubMed  Google Scholar 

  15. Jung, S., Yang, J. Y., Byeon, E. Y., Kim, D. G., Lee, D. G., Ryoo, S., Lee, S., et al. (2021). Copper-coated polypropylene filter face mask with SARS-COV-2 antiviral ability. Polymers, 13(9), 1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ordon, M., Nawrotek, P., Stachurska, X., & Mizielińska, M. (2021). Polyethylene films coated with antibacterial and antiviral layers based on CO2 extracts of raspberry seeds, of pomegranate seeds and of rosemary. Coatings, 11(10), 1179.

    Article  CAS  Google Scholar 

  17. Seidi, F., Deng, C., Zhong, Y., Liu, Y., Huang, Y., Li, C., & **ao, H. (2021). Functionalized masks: Powerful materials against COVID-19 and future pandemics. Small, 17(42), 2102453.

    Article  CAS  Google Scholar 

  18. Idumah, C. I. (2021). Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19. The Journal of the Textile Institute, 112(12), 2056–2076.

    Article  CAS  Google Scholar 

  19. Malmsten, M. (2011). Antimicrobial and antiviral hydrogels. Soft Matter, 7(19), 8725–8736.

    Article  CAS  Google Scholar 

  20. Nowacek, A. S., Balkundi, S., McMillan, J., Roy, U., Martinez-Skinner, A., Mosley, R. L., Gendelman, H. E., et al. (2011). Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. Journal of Controlled Release, 150(2), 204–211.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, L., & Liang, J. (2020). An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Materials Science and Engineering: C, 112, 110924.

    Article  CAS  Google Scholar 

  22. Mallakpour, S., Azadi, E., & Hussain, C. M. (2021). Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and post-pandemic: Coating, packaging, and textile applications. Current Opinion in Colloid & Interface Science, 55, 101480.

    Article  CAS  Google Scholar 

  23. Tang, S., Puryear, W. B., Seifried, B. M., Dong, X., Runstadler, J. A., Ribbeck, K., & Olsen, B. D. (2016). Antiviral agents from multivalent presentation of sialyl oligosaccharides on brush polymers. ACS Macro Letters, 5(3), 413–418.

    Article  CAS  PubMed  Google Scholar 

  24. Erkoc, P., & Ulucan-Karnak, F. (2021). Nanotechnology-based antimicrobial and antiviral surface coating strategies. PRO, 3(1), 25–52.

    Google Scholar 

  25. Rosilo, H., McKee, J. R., Kontturi, E., Koho, T., Hytönen, V. P., Ikkala, O., & Kostiainen, M. A. (2014). Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding. Nanoscale, 6(20), 11871–11881.

    Article  CAS  PubMed  Google Scholar 

  26. Koylu, D., & Carter, K. R. (2009). Stimuli-responsive surfaces utilizing cleavable polymer brush layers. Macromolecules, 42(22), 8655–8660.

    Article  CAS  Google Scholar 

  27. Zan, T., Wu, F., Pei, X., Jia, S., Zhang, R., Wu, S., Zhang, Z., et al. (2016). Into the polymer brush regime through the “grafting-to” method: Densely polymer-grafted rodlike viruses with an unusual nematic liquid crystal behavior. Soft Matter, 12(3), 798–805.

    Article  CAS  PubMed  Google Scholar 

  28. Riedel, T., Rodriguez-Emmenegger, C., de los Santos Pereira, A., Bědajánková, A., **och, P., Boltovets, P. M., & Brynda, E. (2014). Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosensors and Bioelectronics, 55, 278–284.

    Article  CAS  PubMed  Google Scholar 

  29. Demirci, S., Kinali-Demirci, S., & Jiang, S. (2017). A switchable polymer brush system for antifouling and controlled detection. Chemical Communications, 53(26), 3713–3716.

    Article  CAS  PubMed  Google Scholar 

  30. Vermisoglou, E., Panáček, D., Jayaramulu, K., Pykal, M., Frébort, I., Kolář, M., Otyepka, M., et al. (2020). Human virus detection with graphene-based materials. Biosensors and Bioelectronics, 166, 112436.

    Article  CAS  PubMed  Google Scholar 

  31. Afsahi, S., Lerner, M. B., Goldstein, J. M., Lee, J., Tang, X., Bagarozzi, D. A., Jr., Goldsmith, B. R., et al. (2018). Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors and Bioelectronics, 100, 85–88.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, F., Choi, K. S., Park, T. J., Lee, S. Y., & Seo, T. S. (2011). Graphene-based electrochemical biosensor for pathogenic virus detection. BioChip Journal, 5(2), 123–128.

    Article  Google Scholar 

  33. Joshi, S. R., Sharma, A., Kim, G. H., & Jang, J. (2020). Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor. Materials Science and Engineering: C, 108, 110465.

    Article  CAS  Google Scholar 

  34. Deokar, A. R., Nagvenkar, A. P., Kalt, I., Shani, L., Yeshurun, Y., Gedanken, A., & Sarid, R. (2017). Graphene-based “hot plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjugate Chemistry, 28(4), 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  35. **, X., Zhang, H., Li, Y. T., **ao, M. M., Zhang, Z. L., Pang, D. W., Zhang, G. J., et al. (2019). A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus. Microchimica Acta, 186(4), 1–9.

    Article  Google Scholar 

  36. Innocenzi, P., & Stagi, L. (2020). Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes. A perspective. Chemical Science, 11(26), 6606–6622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palmieri, V., & Papi, M. J. N. T. (2020). Can graphene take part in the fight against COVID-19? Nano Today, 33, 100883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye, S., Shao, K., Li, Z., Guo, N., Zuo, Y., Li, Q., Han, H., et al. (2015). Antiviral activity of graphene oxide: How sharp edged structure and charge matter. ACS Applied Materials & Interfaces, 7(38), 21571–21579.

    Article  CAS  Google Scholar 

  39. Du, T., Lu, J., Liu, L., Dong, N., Fang, L., **ao, S., & Han, H. (2018). Antiviral activity of graphene oxide–silver nanocomposites by preventing viral entry and activation of the antiviral innate immune response. ACS Applied Bio Materials, 1(5), 1286–1293.

    Article  CAS  PubMed  Google Scholar 

  40. Darling, A. J., Boose, J. A., & Spaltro, J. (1998). Virus assay methods: Accuracy and validation. Biologicals, 26(2), 105–110.

    Article  CAS  PubMed  Google Scholar 

  41. Manceur, A. P., & Kamen, A. A. (2015). Critical review of current and emerging quantification methods for the development of influenza vaccine candidates. Vaccine, 33(44), 5913–5919.

    Article  CAS  PubMed  Google Scholar 

  42. Baer, A., & Kehn-Hall, K. (2014). Viral concentration determination through plaque assays: Using traditional and novel overlay systems. Journal of Visualized Experiments, (93), e52065.

    Google Scholar 

  43. Smither, S. J., Lear-Rooney, C., Biggins, J., Pettitt, J., Lever, M. S., & Olinger, G. G., Jr. (2013). Comparison of the plaque assay and 50% tissue culture infectious dose assay as methods for measuring filovirus infectivity. Journal of Virological Methods, 193(2), 565–571.

    Article  CAS  PubMed  Google Scholar 

  44. Tobita, K., Sugiura, A., Enomoto, C., & Furuyama, M. (1975). Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Medical Microbiology and Immunology, 162(1), 9–14.

    Article  CAS  PubMed  Google Scholar 

  45. Wiegand, C., Völpel, A., Ewald, A., Remesch, M., Kuever, J., Bauer, J., Bossert, J., et al. (2018). Critical physiological factors influencing the outcome of antimicrobial testing according to ISO 22196/JIS Z 2801. PLoS One, 13(3), e0194339.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cunliffe, A. J., Askew, P. D., Stephan, I., Iredale, G., Cosemans, P., Simmons, L. M., Redfern, J., et al. (2021). How do we determine the efficacy of an antibacterial surface? A review of standardised antibacterial material testing methods. Antibiotics, 10(9), 1069.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Kanematsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanematsu, H., Barry, D. (2022). Viral Behaviors on Materials and the International Standard Between Materials and Microbial/Viral Environments. In: Barry, D., Kanematsu, H. (eds) Studies to Combat COVID-19 using Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1356-3_4

Download citation

Publish with us

Policies and ethics

Navigation