Enzymes in Functional Food Development

  • Chapter
  • First Online:
Novel Food Grade Enzymes

Abstract

Enzymes are ubiquitous biocatalysts, represent a consolidated strategy in various food industries for the transformation of one biological compound to another. In contrast to conventional synthesis, enzymatic synthesis is an important technological advancement as a consequence of sustainability, substrate selectivity, nontoxicity, and low energy input. Therefore, there has been a growing trend in the use of free and immobilized enzymes in various food industrial applications, including the manufacturing of several functional foods and ingredients. Functional foods with health benefits beyond nutrition have gained much attention due to some factors such as interest in health-consciousness and the growing market. A variety of functional foods can be considered to be those fortified, wholes, enriched, or enhanced foods that represent physiological health benefits beyond the essential nutrients provision (e.g., vitamins and minerals) when consumed in adequate amounts on a regular basis. The initial components in functional food supplements naturally consist of fruit, food, beverage, grains, and supplement sectors at a low level. Nutraceuticals or functional food could be produced from the enzymatic reaction utilizable in one of the several areas of food science and technology, that is experiencing fast growth in recent years. Functional food could be enzymatically derived from various reactions: l-asparaginase, an intercellular enzyme, is used in the baking industry which suppresses acrylamide production. Addition of asparaginase is a recommended strategy to decrease the formation of acrylamide, as it catalysis the hydrolysis of asparagine to aspartic acid an amino acid with high nutritive value. Carbohydrate active enzymes such as β-glucanase which is able to proceed on glucose polysaccharides and to further develop the production of β-glucans, the saccharide made up of multiple sugar molecules. β-Glucan may offer a number of health benefits, including lowering cholesterol, improving blood sugar management, and boosting the immune system which is produced by the enzymatic process of beta d-glucose polysaccharide naturally occurring in the cell wall of cereals like oat. Chlorophyllase (Chlase) is widely distributed in the chloroplast, thylakoid membrane, and etioplast of higher plants, such as ferns, mosses, brown and red algae, and diatoms. Chlase catalysis is the degradation of chlorophyll to chlorophyllide (also called Chlide), which is introduced as a food colorant. l-Glutaminase is a catalyst for the production of l-theanine, a free amino acid with many health benefits. l-Theanine synthesis occurs from l-glutamine and ethylamine substrates through the transpeptidation reaction of l-glutaminase, and a demand for this amino acid is expected to grow rapidly in the industry. Lipids such as CLA (conjugated linoleic acid) are in the group of functional food, a result of CLA production from natural oil in the presence of a lipase. CLA is a natural derivative of essential fatty acid, linoleic acid which shows many beneficial effects on the immune system, role in obesity control and anticarcinogenic behavior phytases may find application in food processing to produce functional foods and phytic acid degradation. Phytase is able to decrease the antinutritional effect of phytate (inorganic phosphate complex) adverse impact of inorganic P excretion to the environment while increasing the digestibility of phosphorous (P), calcium, amino acids, and energy. γ-Amino butyric acid (GABA) is an active protein, in rice germ using protease or additives: produced by the decarboxylation of glutamic acid, GABA is catalyzed by glutamate decarboxylase, GABA functions as the main inhibitory neurotransmitter in the central nervous system. Tannase is able to catalyze the production of tea beverages while maintaining the tea’s original deep flavor. Engineering of enzymes is a potential strategy in the design of food development according to the specificity and enzyme structural changes. The next future step toward the commercialization of the enzymatic approach in food processing is to enhance their efficiency and mitigate adverse effects on the sensory properties of food products. In this chapter, we mainly highlighted the importance of selected enzymes on food development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adebiyi, A. P., et al. (2009). Purification and characterization of antioxidative peptides derived from rice bran protein hydrolysates. European Food Research and Technology, 228(4), 553–563.

    Article  CAS  Google Scholar 

  • Adefegha, S. A. (2018). Functional foods and nutraceuticals as dietary intervention in chronic diseases; Novel perspectives for health promotion and disease prevention. Journal of Dietary Supplements, 15(6), 977–1009.

    Article  PubMed  Google Scholar 

  • Afarin, M., Alemzadeh, I., & Yazdi, Z. K. (2018). Conjugated linoleic acid production and optimization via catalytic reaction method using safflower oil. International Journal of Engineering, Transactions B: Applications, 31(8), 1166–1171.

    CAS  Google Scholar 

  • Aharwar, A., & Parihar, D. K. (2018). Tannases: Production, properties, applications. Biocatalysis and Agricultural Biotechnology, 15, 322–334.

    Article  Google Scholar 

  • Aharwar, A., & Parihar, D. K. (2019). Talaromyces verruculosus tannase production, characterization and application in fruit juices detannification. Biocatalysis and Agricultural Biotechnology, 18, 101014.

    Article  Google Scholar 

  • Al Mijan, M., & Lim, B. O. (2018). Diets, functional foods, and nutraceuticals as alternative therapies for inflammatory bowel disease: Present status and future trends. World Journal of Gastroenterology, 24(25), 2673–2685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alam, S., et al. (2019) Recent development in the uses of asparaginase as food enzyme (pp. 55–81).

    Google Scholar 

  • Alcalde, M., et al. (2006). Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends in Biotechnology, 24(6), 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Alemzadeh, I., et al. (2020). Encapsulation of food components and bioactive ingredients and targeted release. International Journal of Engineering, Transactions A: Basics, 33(1), 1–11.

    Google Scholar 

  • Alkhatib, A., et al. (2017). Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients, 9(12), 1310.

    Article  PubMed Central  CAS  Google Scholar 

  • Ando, A. (2004). Conjugated linoleic acid production from castor oil by Lactobacillus plantarum JCM 1551. Enzyme and Microbial Technology, 35, 40–45.

    Article  CAS  Google Scholar 

  • Arab, F., Alemzadeh, I., & Maghsoudi, V. (2011). Determination of antioxidant component and activity of rice bran extract. Scientia Iranica, 18(6), 1402–1406.

    Article  CAS  Google Scholar 

  • Arshad, R., et al. (2019). Optimized production of tannase and gallic acid from fruit seeds by solid state fermentation. Tropical Journal of Pharmaceutical Research, 18(5), 911–918.

    Article  CAS  Google Scholar 

  • Asselin, B., & Rizzari, C. (2015). Asparaginase pharmacokinetics and implications of therapeutic drug monitoring. Leukemia and Lymphoma, 56(8), 2273–2280.

    Article  CAS  PubMed  Google Scholar 

  • Baskar, G., Aiswarya, R., & Renganathan, S. (2019). Applications of asparaginase in food processing. In Green bio-processes (pp. 83–98). Springer.

    Chapter  Google Scholar 

  • Batool, T., et al. (2016). A comprehensive review on L-asparaginase and its applications. Applied Biochemistry and Biotechnology, 178(5), 900–923.

    Article  CAS  PubMed  Google Scholar 

  • Berin, M. C. (2015). Immunopathophysiology of food protein-induced enterocolitis syndrome. Journal of Allergy and Clinical Immunology, 135(5), 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  • Bhoite, R. N., & Murthy, P. S. (2015). Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food and Bioproducts Processing, 94, 727–735.

    Article  CAS  Google Scholar 

  • Bornscheuer, U. T., et al. (2012). Engineering the third wave of biocatalysis. Nature, 485(7397), 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Boutrou, R., et al. (2013). Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. American Journal of Clinical Nutrition, 97(6), 1314–1323.

    Article  CAS  PubMed  Google Scholar 

  • Brumano, L. P., et al. (2019). Development of L-asparaginase biobetters: Current research status and review of the desirable quality profiles. Frontiers in Bioengineering and Biotechnology, 6(January), 212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton, S. G., Cowan, D. A., & Woodley, J. M. (2002). The search for the ideal biocatalyst. Nature Biotechnology, 20(1), 37–45. https://doi.org/10.1038/nbt0102-37

    Article  CAS  PubMed  Google Scholar 

  • Cachumba, J. J. M., et al. (2016). Current applications and different approaches for microbial L-asparaginase production. Brazilian Journal of Microbiology, 47, 77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Q. Q., et al. (2019). Improving the taste of autumn green tea with tannase. Food Chemistry, 277, 432–437.

    Article  CAS  PubMed  Google Scholar 

  • Carle, R., & Schweiggert, R. (Eds.). (2016). Handbook on natural pigments in food and beverages: Industrial applications for improving food color. Woodhead Publishing.

    Google Scholar 

  • Carvalho, C. C. C. R. (2017). Whole cell biocatalysts: Essential workers from nature to the industry. Microbial Biotechnology, 10(2), 250–263.

    Article  PubMed  Google Scholar 

  • Cavalcanti, R. M. F., et al. (2017). Screening, selection and optimization of the culture conditions for tannase production by endophytic fungi isolated from Caatinga. Journal of Applied Biology & Biotechnology, 5(1), 1–9.

    CAS  Google Scholar 

  • Cavalcanti, R. M. F., et al. (2020). Stabilization and application of spray-dried tannase from Aspergillus fumigatus CAS21 in the presence of different carriers. 3 Biotech, 10(4), 1–14.

    Article  Google Scholar 

  • Chanderman, A., et al. (2016). Production, characteristics and applications of phytase from a rhizosphere isolated Enterobacter sp. ACSS. Bioprocess and Biosystems Engineering, 39(10), 1577–1587.

    Article  CAS  PubMed  Google Scholar 

  • Chu, H. M., et al. (2004). Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure, 12(11), 2015–2024.

    Article  CAS  PubMed  Google Scholar 

  • Chung, K. T., Wei, C. I., & Johnson, M. G. (1998). Are tannins a double-edged sword in biology and health? Trends in Food Science and Technology, 9(4), 168–175.

    Article  CAS  Google Scholar 

  • Cui, Y., et al. (2020). Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. International Journal of Molecular Sciences, 21(3), 995.

    Article  CAS  PubMed Central  Google Scholar 

  • De Leo, F., et al. (2009). Angiotensin converting enzyme (ACE) inhibitory peptides: Production and implementation of functional food. Current Pharmaceutical Design, 15(31), 3622–3643.

    Article  PubMed  Google Scholar 

  • de Moura Sarquis, M. I., et al. (2004). Production of L-asparaginase by filamentous fungi. Memórias do Instituto Oswaldo Cruz, 99(5), 489–492.

    Article  Google Scholar 

  • de Paulo Farias, D., et al. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science and Technology, 93, 23–35.

    Article  CAS  Google Scholar 

  • Dersjant-Li, Y., et al. (2015). Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture, 95(5), 878–896.

    Article  CAS  PubMed  Google Scholar 

  • Dewapriya, P., & Kim, S. K. (2014). Marine microorganisms: An emerging avenue in modern nutraceuticals and functional foods. Food Research International, 56, 115–125.

    Article  CAS  Google Scholar 

  • Dewi, R. T. K., Mubarik, N. R., & Suhartono, M. T. (2016). Medium optimization of β-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates Journal of Food and Agriculture, 28(2), 116–125.

    Article  Google Scholar 

  • Doriya, K., & Kumar, D. S. (2016). Isolation and screening of l-asparaginase free of glutaminase and urease from fungal sp. 3 Biotech, 6(2), 239.

    Article  PubMed  PubMed Central  Google Scholar 

  • DSM. (2018). DSM introduces PreventASe® XR to extend use of enzymatic acrylamide-reduction solution to more snacks and baked goods. Retrieved from https://www.dsm.com/corporate/media/informationcenter-news/2018/07/2018-07-10-dsm-introduces-preventase-xr-to-extend-use-of-enzymatic-acrylamide-reduction-solution-to-more-snacks-and-baked-goods1.html

  • Ferruzzi, M. G., & Blakeslee, J. (2007). Digestion absorption and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, 27(1), 1–12. https://doi.org/10.1016/j.nutres.2006.12.003

    Article  CAS  Google Scholar 

  • Filella, I., Serrano, L., Serra, J., & Peñuelas, J. (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 35(5), 1400–1405. https://doi.org/10.2135/cropsci1995.0011183X003500050023x

    Article  Google Scholar 

  • Fox, P. F. (1989). Proteolysis during cheese manufacture and ripening. Journal of Dairy Science, 72(6), 1379–1400.

    Article  CAS  Google Scholar 

  • Gandul-Rojas, B., & Mínguez-Mosquera, M. I. (1996). Chlorophyllase activity in olive fruits and its relationship with the loss of chlorophyll pigments in the fruits and oils. Journal of the Science of Food and Agriculture, 72(3), 291–294.

    Article  CAS  Google Scholar 

  • García-Conesa, M. T., et al. (2001). Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae. Carbohydrate Polymers, 44(4), 319–324.

    Article  Google Scholar 

  • Garrett, J. B., et al. (2004). Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Applied and Environmental Microbiology, 70(5), 3041–3046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilescu, M., & Chisti, Y. (2005). Biotechnology—A sustainable alternative for chemical industry. Biotechnology Advances, 23(7–8), 471–499.

    Article  CAS  PubMed  Google Scholar 

  • Georgetti, S. R., et al. (2009). Enhanced in vitro and in vivo antioxidant activity and mobilization of free phenolic compounds of soybean flour fermented with different β-glucosidase-producing fungi. Journal of Applied Microbiology, 106(2), 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Giese, E. C., Dekker, R. F. H., Barbosa, A., & da Silva, M. (2012). Production of β-(1,3)-glucanases by Trichoderma harzianum Rifai: Optimization and application to produce gluco-oligosaccharides from paramylon and pustulan. Fermentation Technology, 1(1), 1–5.

    Article  Google Scholar 

  • Gligor, O., et al. (2019). Enzyme-assisted extractions of polyphenols—A comprehensive review. Trends in Food Science and Technology, 88, 302–315.

    Article  CAS  Google Scholar 

  • Global Medical Asparaginase Sales Market Report 2018. (2018). Retrieved from https://www.themarketreports.com/report/global-medical-asparaginase-sales-market-report-2018

  • Gofferjé, G., et al. (2014). Kinetics of enzymatic esterification of glycerol and free fatty acids in crude Jatropha oil by immobilized lipase from Rhizomucor miehei. Journal of Molecular Catalysis B: Enzymatic, 107, 1–7.

    Article  CAS  Google Scholar 

  • Govindarajan, R. K., et al. (2019). Purification, structural characterization and biotechnological potential of tannase enzyme produced by Enterobacter cloacae strain 41. Process Biochemistry, 77, 37–47.

    Article  CAS  Google Scholar 

  • Granato, D., et al. (2020). Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology, 11(1), 93–118.

    Article  CAS  PubMed  Google Scholar 

  • Greiner, R., & Konietzny, U. (2006). Phytase for food application. Food Technology and Biotechnology, 44(2), 125–140.

    CAS  Google Scholar 

  • Grom, L. C., et al. (2020). Probiotic dairy foods and postprandial glycemia: A mini-review. Trends in Food Science and Technology, 101, 165–171.

    Article  CAS  Google Scholar 

  • Guan, H., et al. (2018). The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry, 245, 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Gul, K., Singh, A. K., & Jabeen, R. (2016). Nutraceuticals and functional foods: The foods for the future world. Critical Reviews in Food Science and Nutrition, 56(16), 2617–2627.

    Article  CAS  PubMed  Google Scholar 

  • Handa, V., et al. (2020). Biotechnological applications of microbial phytase and phytic acid in food and feed industries. Biocatalysis and Agricultural Biotechnology, 25, 101600.

    Article  Google Scholar 

  • Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine caffeine and their combination on cognition and mood. Biological Psychology, 77(2), 113–122. https://doi.org/10.1016/j.biopsycho.2007.09.008

    Article  PubMed  Google Scholar 

  • Hendriksen, H. V., Puder, K., & Goldbech Olsen, A. (2016). Method for reducing the level of asparagine in a food material. U.S. Patent Application 14/781,760.

    Google Scholar 

  • Hennessy, A. A., et al. (2012). The production of conjugated α-linolenic, γ-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. Lipids, 47(3), 313–327.

    Article  CAS  PubMed  Google Scholar 

  • Holm, L., et al. (2017). Contraction mode and whey protein intake affect the synthesis rate of intramuscular connective tissue. Muscle and Nerve, 55(1), 128–130.

    Article  CAS  PubMed  Google Scholar 

  • Hosikian, A., Lim, S., Halim, R., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering, 1–11. https://doi.org/10.1155/2010/391632

  • Hörtensteiner, S., & Kräutler, B. (2011). Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(8), 977–988. https://doi.org/10.1016/j.bbabio.2010.12.007

    Article  CAS  Google Scholar 

  • Hu, X., et al. (2015). Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiology, 167(3), 660–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., et al. (2006). A novel phytase with preferable characteristics from Yersinia intermedia. Biochemical and Biophysical Research Communications, 350(4), 884–889.

    Article  CAS  PubMed  Google Scholar 

  • Ire, F. S., & Nwanguma, A. C. (2020). Comparative evaluation on tannase production by Lasiodiplodia plurivora ACN-10 under submerged fermentation (SmF) and solid state fermentation (SSF). Asian Journal of Biotechnology and Bioresource Technology, 39–49. https://doi.org/10.9734/ajb2t/2020/v6i130074

  • Jahadi, M., & Khosravi-Darani, K. (2017). Liposomal encapsulation enzymes: From medical applications to kinetic characteristics. Mini-Reviews in Medicinal Chemistry, 17, 366–370.

    Article  CAS  PubMed  Google Scholar 

  • Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Mozafar, M. R., Saboury, A. A., & Pourhosseini, P. S. (2015). The encapsulation of flavourzyme in nanoliposome by heating method. Journal of Food Science and Technology, 52(4), 2063–2072.

    Article  CAS  PubMed  Google Scholar 

  • Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Mozafari, M. R., Saboury, A. A., Zoghi, A., & Mohammadi, M. (2016). Modeling of proteolysis in Iranian brined cheese using proteinase-loaded nanoliposome. International Journal of Dairy Technology, 69(1), 57–62.

    Article  CAS  Google Scholar 

  • Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., et al. (2012). Evaluating the effects of process variables on protease-loaded nano-liposome production by Plackett-Burman design for utilizing in cheese ripening acceleration. Asian Journal of Chemistry, 24(9), 3891–3894.

    CAS  Google Scholar 

  • Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., et al. (2020). Accelerating ripening of Iranian white brined cheesesusing liposome-encapsulated and free proteinases. Biointerface Research in Applied Chemistry, 10(1), 4966–4971.

    Article  CAS  Google Scholar 

  • Jahan-Mihan, A., et al. (2011). Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients, 3(5), 574–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana, A., et al. (2013). Structural characterization of thermostable, solvent tolerant, cytosafe tannase from Bacillus subtilis PAB2. Biochemical Engineering Journal, 77, 161–170.

    Article  CAS  Google Scholar 

  • JECFA. (2002). Evaluation of certain food additives. Fifty-ninth report of the joint FAO/WHO expert committee on food additives. World Health Organization technical report series, 913.

    Google Scholar 

  • Jha, S. K., et al. (2012). Microbial L-asparaginase: A review on current scenario and future prospects. International Journal of Pharmaceutical Sciences and Research, 3(9), 3076–3090.

    CAS  Google Scholar 

  • Jiang, J., Björck, L., & Fondén, R. (1998). Production of conjugated linoleic acid by dairy starter cultures. Journal of Applied Microbiology, 85(1), 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, S., & Satyanarayana, T. (2017). Characteristics and multifarious potential applications of HAP phytase of the unconventional yeast Pichia anomala. In Developments in fungal biology and applied mycology (pp. 265–278). Springer.

    Chapter  Google Scholar 

  • Kaur, R. (2017). Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nusantara Bioscience, 9(1), 68–76.

    Article  Google Scholar 

  • Khanbabaee, K., & van Ree, T. (2001). Tannins: Classification and definition. Natural Product Reports, 18(6), 641–649.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. H., et al. (2007). Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnology and Bioprocess Engineering, 12(6), 707–712.

    Article  Google Scholar 

  • Konietzny, U., & Greiner, R. (2004). Bacterial phytase: Potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology, 35(1–2), 11–18.

    CAS  Google Scholar 

  • Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16, 945–960.

    Article  CAS  Google Scholar 

  • Koseki, T., et al. (2018). Characterization of a novel Aspergillus oryzae tannase expressed in Pichia pastoris. Journal of Bioscience and Bioengineering, 126(5), 553–558.

    Article  CAS  PubMed  Google Scholar 

  • Kouchak Yazdi, Z., & Alemzadeh, I. (2016a). Lipase catalyzed incorporation of conjugated linoleic acid by transesterification into sunflower oil applying immobilized lipase (lipozyme thermomyces lanuginosus and rhizomucor mehei). International Journal of Engineering, Transactions A: Basics, 29(4), 436–443.

    Google Scholar 

  • Kouchak Yazdi, Z., & Alemzadeh, I. (2016b). Lipase catalyzed incorporation of conjugated linoleic acid by transesterification into sunflower oil applying immobilized lipase (Lipozyme TL im and im RM). International Journal of Engineering, Transactions A: Basics, 29(4), 549–556.

    Google Scholar 

  • Kouchak Yazdi, Z., Alemzadeh, I., & Vossoughi, M. (2017). Comparison and optimization of conjugated linoleic acid production by Lactobacillus plantarum and Lactobacillus plantarum subsp. plantarum. Scientia Iranica, 24(3), 1272–1280.

    Article  Google Scholar 

  • Kuddus, M. (2018). Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. Academic Press.

    Book  Google Scholar 

  • Kumar, D., et al. (2020). Barley grain beta glucan enrichment: Status and opportunities. In Wheat and barley grain biofortification (pp. 295–308). Woodhead Publishing.

    Chapter  Google Scholar 

  • Kumar, M., et al. (2016). Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach. AMB Express, 6(1), 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, S. O., et al. (2003). Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri. Biotechnology Letters, 25(12), 935–938.

    Article  CAS  PubMed  Google Scholar 

  • Lin, T. Y. (2006). Conjugated linoleic acid production by cells and enzyme extract of Lactobacillus delbrueckii ssp. bulgaricus with additions of different fatty acids. Food Chemistry, 94(3), 437–441.

    Article  CAS  Google Scholar 

  • Liu, F., et al. (2018). High level expression and characterization of tannase tan7 using Aspergillus niger SH-2 with low-background endogenous secretory proteins as the host. Protein Expression and Purification, 144, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Casado, G., et al. (2008). Plant glycosyl hydrolases and biofuels: A natural marriage. Current Opinion in Plant Biology, 11(3), 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Mansor, A., et al. (2019). Evaluation of selected agri-industrial residues as potential substrates for enhanced tannase production via solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 20, 101216.

    Article  Google Scholar 

  • Maqsood, S., et al. (2020). Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chemistry, 308, 125522.

    Article  CAS  PubMed  Google Scholar 

  • Maurya, A. K., Parashar, D., & Satyanarayana, T. (2017). Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile and its structural and biochemical characteristics. International Journal of Biological Macromolecules, 94, 36–44.

    Article  CAS  PubMed  Google Scholar 

  • Meinlschmidt, P., Ueberham, E., Lehmann, J., Reineke, K., Schlüter, O., Schweiggert-Weisz, U., & Eisner, P. (2016). The effects of pulsed ultraviolet light cold atmospheric pressure plasma and gamma-irradiation on the immunoreactivity of soy protein isolate. Innovative Food Science & Emerging Technologies, 38, 374–383. https://doi.org/10.1016/j.ifset.2016.06.007

    Article  CAS  Google Scholar 

  • Melini, F., et al. (2019). Health-promoting components in fermented foods: An up-to-date systematic review. Nutrients, 11(5), 1189.

    Article  CAS  PubMed Central  Google Scholar 

  • Mitchell, L., et al. (1994). Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: Risk of thrombotic complications in L-sparaginase-induced antithrombin III deficiency. Blood, 83(2), 386–391.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi, R., Mahmoudzade, M., Atefi, M., Khosravi-Darani, K., & Mozafari, M. R. (2015). Applications of nanoliposomes in cheese technology. International Journal of Dairy Technology, 68(1), 11–23.

    Article  CAS  Google Scholar 

  • Mohanty, D. P., Mohapatra, S., Misra, S., & Sahu, P. S. (2016). Milk derived bioactive peptides and their impact on human health—A review. Saudi Journal of Biological Sciences, 23, 577–583.

    Article  CAS  PubMed  Google Scholar 

  • Momeni, V., Alemzadeh, I., & Vosoughi, M. (2015). Enhancement of L-asparaginase production by candida utilis in a 13L fermenter and its purification. International Journal of Engineering, Transactions B: Applications, 28(8), 1133–1141.

    Google Scholar 

  • Niezgoda, N., & Gliszczyńska, A. (2019). Lipase catalyzed acidolysis for efficient synthesis of phospholipids enriched with isomerically pure cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid. Catalysts, 9(12), 1012.

    Article  CAS  Google Scholar 

  • Nsayef Muslim, D. S., Abbas Dham, Z., & Mohammed, D. N. J. (2017). Synthesis and characterization of nanoparticles conjugated tannase and using it for enhancement of antibacterial activity of tannase produced by Serratia marcescens. Microbial Pathogenesis, 110, 484–493.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, J., et al. (2005). Production of conjugated fatty acids by lactic acid bacteria. Journal of Bioscience and Bioengineering, 100(4), 355–364.

    Article  CAS  PubMed  Google Scholar 

  • Ong, C. B., & Annuar, M. S. M. (2018). Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior. Preparative Biochemistry and Biotechnology, 48(2), 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Paiva, A. L., Balcão, V. M., & Malcata, F. X. (2000). Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme and Microbial Technology, 27(3–5), 187–204.

    Article  CAS  PubMed  Google Scholar 

  • Panda, R., et al. (2015). Enzymatic hydrolysis does not reduce the biological reactivity of soybean proteins for all allergic subjects. Journal of Agricultural and Food Chemistry, 63(43), 9629–9639.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A., et al. (1999). Fermentation for the production of industrial enzymes. Fermentation Science and Technology, 77(1), 1–14.

    Google Scholar 

  • Panesar, P. S., Kaur, R., Singla, G., & Sangwan, R. S. (2016). Bioprocessing of agro-industrial wastes for production of foodgrade enzymes: Progress and prospects. Applied Food Biotechnology, 3(4), 208–227.

    CAS  Google Scholar 

  • Park, S. J., et al. (2013). Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 36(7), 885–892.

    Article  CAS  PubMed  Google Scholar 

  • Patel, S., & Rauf, A. (2017). Edible seeds from Cucurbitaceae family as potential functional foods: Immense promises, few concerns. Biomedicine and Pharmacotherapy, 91, 330–337.

    Article  CAS  PubMed  Google Scholar 

  • Patro, K. R., et al. (2014). Development of new medium composition for enhanced production of L-asparaginase by Aspergillus flavus. Journal of Environmental Biology, 35(1), 295–300.

    Google Scholar 

  • Pedreschi, F., et al. (2011). Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT—Food Science and Technology, 44(6), 1473–1476.

    Article  CAS  Google Scholar 

  • Pham, V. D., et al. (2016). Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes. Biotechnology Letters, 38(2), 321–327.

    Article  CAS  PubMed  Google Scholar 

  • Phelan, M., Aherne, A., FitzGerald, R. J., & O’Brien, N. M. (2009). Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal, 19, 643–654.

    Article  CAS  Google Scholar 

  • Philippaerts, A., Van Aelst, J., & Sels, B. (2013). Conjugated linoleic acids and conjugated vegetable oils: From nutraceutical to bio-polymer. European Journal of Lipid Science and Technology, 115(7), 717–720.

    Article  CAS  Google Scholar 

  • Pires, E. B. E., et al. (2019). Production of fungal phytases from agroindustrial byproducts for pig diets. Scientific Reports, 9(1), 1–9.

    Article  CAS  Google Scholar 

  • Pokora, M., et al. (2013). Biological and functional properties of proteolytic enzyme-modified egg protein by-products. Food Science & Nutrition, 1(2), 184–195.

    Article  CAS  Google Scholar 

  • Poli, A., et al. (2018). Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacological Research, 134, 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Posovszky, C. (2016). Congenital intestinal diarrhoeal diseases: A diagnostic and therapeutic challenge. Best Practice and Research: Clinical Gastroenterology, 30(2), 187–211.

    Article  CAS  PubMed  Google Scholar 

  • Puppala, K. R., et al. (2019). Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatalysis and Agricultural Biotechnology, 18, 101020.

    Article  Google Scholar 

  • Rai, A. K., Pandey, A., & Sahoo, D. (2019). Biotechnological potential of yeasts in functional food industry. Trends in Food Science and Technology, 83, 129–137.

    Article  CAS  Google Scholar 

  • Reges de Sena, A., et al. (2014). Production, characterization and application of a thermostable tannase from Pestalotiopsis guepinii URM 7114. Food Technology and Biotechnology, 52(4), 459–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittig, N., et al. (2017). Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without β-hydroxy-β-methylbutyrate (HMB) during fasting-induced catabolism: A human randomized crossover trial. Clinical Nutrition, 36(3), 697–705.

    Article  CAS  PubMed  Google Scholar 

  • Rizzari, C., et al. (2000). L-asparagine depletion and L-asparaginase activity in children with acute lymphoblastic leukemia receiving i.m. or i.v. Erwinia C. or E. coli L-asparaginase as first exposure. Annals of Oncology, 11(2), 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Rizzello, C. G., De Angelis, M., Di Cagno, R., Camarca, A., Silano, M., Losito, I., De Vincenzi, M., De Bari, M. D., Palmisano, F., Maurano, F., Gianfrani, C., & Gobbetti, M. (2007). Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: New perspectives for celiac disease. Applied and Environmental Microbiology, 73(14), 4499–4507. https://doi.org/10.1128/AEM.00260-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, E., et al. (2000). Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Archives of Biochemistry and Biophysics, 382(1), 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Mendoza, J., et al. (2019). Purification and biochemical characterization of a novel thermophilic exo-β-1,3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. Electronic Journal of Biotechnology, 41, 60–71.

    Article  CAS  Google Scholar 

  • Ruiz-Herrera, J., & Ortiz-Castellanos, L. (2019). Cell wall glucans of fungi. A review. Cell Surface, 5, 100022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahib, N. G., et al. (2013). Coriander (Coriandrum sativum L.): A potential source of high-value components for functional foods and nutraceuticals—A review. Phytotherapy Research, 27(10), 1439–1456.

    Article  CAS  PubMed  Google Scholar 

  • Sakhaei, M., & Alemzadeh, I. (2017). Enzymatic synthesis of theanine in the presence of L-glutaminase produced by Trichoderma koningii. Applied Food Biotechnology, 4(2), 113–121.

    CAS  Google Scholar 

  • Sato, H., et al. (2012). Inhibitory effects of water-soluble low-molecular-weight β-(1,3-1,6) D-glucan isolated from aureobasidium pullulans 1A1 strain black yeast on mast cell degranulation and passive cutaneous anaphylaxis. Bioscience, Biotechnology and Biochemistry, 76(1), 84–88.

    Article  CAS  Google Scholar 

  • Saxena, A., et al. (2020). Characteristics of an acidic phytase from Aspergillus aculeatus APF1 for dephytinization of biofortified wheat genotypes. Applied Biochemistry and Biotechnology, 191(2), 679–694.

    Article  CAS  PubMed  Google Scholar 

  • Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., & Hörtensteiner, S. (2009). The Plant Cell, 21(3), 767–785. https://doi.org/10.1105/tpc.108.064089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj, S., et al. (2019). Modeling and optimization of tannase production with Triphala in packed bed reactor by response surface methodology, genetic algorithm, and artificial neural network. 3 Biotech, 9(7), 259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selwal, M. K., & Selwal, K. K. (2012). High-level tannase production by Penicillium atramentosum KM using agro residues under submerged fermentation. Annals of Microbiology, 62(1), 139–148.

    Article  CAS  Google Scholar 

  • Shah, P. C., et al. (2017). Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides. AMB Express, 7(1), 1–11.

    Article  CAS  Google Scholar 

  • Shao, Y., et al. (2020). Thermostable tannase from aspergillus Niger and its application in the enzymatic extraction of green tea. Molecules, 25(4), 952.

    Article  CAS  PubMed Central  Google Scholar 

  • Sharafi, E., Dehestani, A., & Farmani, J. (2017). Bioinformatics evaluation of plant chlorophyllase, the key enzyme in chlorophyll degradation, 4(3), 167–678.

    Google Scholar 

  • Shi, R., et al. (2017). Biochemical characterization of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. International Journal of Biological Macromolecules, 96, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Shoji, T., et al. (2006). Apple procyanidin oligomers absorption in rats after oral administration: Analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 54(3), 884–892.

    Article  CAS  PubMed  Google Scholar 

  • Sicherer, S. H., & Sampson, H. A. (2014). Food allergy: Epidemiology pathogenesis diagnosis and treatment. Journal of Allergy and Clinical Immunology, 133(2), 291–307.e5. https://doi.org/10.1016/j.jaci.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  • Sirtori, C. R., et al. (2017). Nutraceutical approaches to metabolic syndrome. Annals of Medicine, 49(8), 678–697.

    Article  CAS  PubMed  Google Scholar 

  • Song, H. Y., El Sheikha, A. F., & Hu, D. M. (2019). The positive impacts of microbial phytase on its nutritional applications. Trends in Food Science and Technology, 86, 553–562.

    Article  CAS  Google Scholar 

  • Srivastava, A., & Kar, R. (2009). Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Brazilian Journal of Microbiology, 40(4), 782–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suleria, H. A. R., et al. (2015). Marine-based nutraceuticals: An innovative trend in the food and supplement industries. Marine Drugs, 13(10), 6336–6351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh, S., & Radha, K. V. (2016). Statistical optimization and mutagenesis for high level of phytase production by Rhizopus oligosporus MTCC 556 under solid state fermentation. Journal of Environmental Biology, 37(2), 253–259.

    CAS  PubMed  Google Scholar 

  • Sutivisedsak, N., et al. (2013). Novel sources of β-glucanase for the enzymatic degradation of schizophyllan. Enzyme and Microbial Technology, 52(3), 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, C., et al. (2012). Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme and Microbial Technology, 51(3), 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Tanna, B., & Mishra, A. (2018). Metabolites unravel nutraceutical potential of edible seaweeds: An emerging source of functional food. Comprehensive Reviews in Food Science and Food Safety, 17(6), 1613–1624.

    Article  PubMed  Google Scholar 

  • Tarahomjoo, S., & Alemzadeh, I. (2003). Surfactant production by an enzymatic method. Enzyme and Microbial Technology, 33(1), 33–37.

    Article  CAS  Google Scholar 

  • Tatiana, P. S. L. L., et al. (2016). Tannase production by Aspergillus spp. UCP1284 using cashew bagasse under solid state fermentation. African Journal of Microbiology Research, 10(16), 565–571.

    Article  CAS  Google Scholar 

  • Tavano, O. L., et al. (2018). Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety, 17(2), 412–436.

    Article  PubMed  Google Scholar 

  • Tian, M., & Yuan, Q. (2016). Optimization of phytase production from potato waste using Aspergillus ficuum. 3 Biotech, 6(2), 256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torang, A., & Alemzadeh, I. (2016). Acrylamide reduction in potato crisps using: Asparaginase from Candida utilis, commercial asparaginase, salt immersion, and pH treatment. International Journal of Engineering, 29(7), 879–886.

    CAS  Google Scholar 

  • Vafabakhsh, Z., Khosravi-Darani, K., Khajeh, K., Jahadi, M., Komeili, R., & Mortazavian, A. M. (2013). Stability and catalytic kinetics of protease loaded liposomes. Biochemical Engineering Journal, 72, 11–17.

    Article  CAS  Google Scholar 

  • Varadharajan, V., et al. (2017). Modeling and verification of process parameters for the production of tannase by Aspergillus oryzae under submerged fermentation using agro-wastes. Biotechnology and Applied Biochemistry, 64(1), 100–109.

    Article  CAS  PubMed  Google Scholar 

  • Vaziri, A. S., Alemzadeh, I., & Vossoughi, M. (2019). Survivability and oxidative stability of co-microencapsulated L. plantarum PTCC 1058 and DHA as a juice carrier. Food Bioscience, 32, 100460.

    Article  CAS  Google Scholar 

  • Venkatakrishnan, K., Chiu, H. F., & Wang, C. K. (2020). Impact of functional foods and nutraceuticals on high blood pressure with a special focus on meta-analysis: Review from a public health perspective. Food and Function, 11(4), 2792–2804.

    Article  CAS  PubMed  Google Scholar 

  • Vidal, A. R., et al. (2018). Effects of enzymatic hydrolysis (Flavourzyme®) assisted by ultrasound in the structural and functional properties of hydrolyzates from different bovine collagens. Food Science and Technology, 38, 103–108.

    Article  Google Scholar 

  • Wu, Q., et al. (2018). Isolation of β-1,3-glucanase-producing microorganisms from poria cocos cultivation soil via molecular biology. Molecules, 23(7), 1555.

    Article  PubMed Central  CAS  Google Scholar 

  • Xu, F., Oruna-Concha, M. J., & Elmore, J. S. (2016). The use of asparaginase to reduce acrylamide levels in cooked food. Food Chemistry, 210, 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Xu, N., Wei, L., & Liu, J. (2017). Biotechnological advances and perspectives of gamma-aminobutyric acid production. World Journal of Microbiology and Biotechnology, 33(3), 64.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., et al. (2002). Production of conjugated linoleic acids through KOH-catalyzed dehydration of ricinoleic acid. Chemistry and Physics of Lipids, 119(1–2), 23–31.

    Article  CAS  PubMed  Google Scholar 

  • Yazdi, Z. K., & Alemzadeh, I. (2017). Kinetic mechanism of conjugated linoleic acid esterification and production of enriched glycerides as functional oil. Canadian Journal of Chemical Engineering, 95(11), 2078–2086.

    Article  CAS  Google Scholar 

  • You, S., et al. (2016). Improvement of the thermostability and catalytic efficiency of a highly active β-glucanase from Talaromyces leycettanus JCM12802 by optimizing residual charge-charge interactions. Biotechnology for Biofuels, 9(1), 1–12.

    Article  CAS  Google Scholar 

  • Yuan, J., Jiang, B., Li, K., Shen, W., & Tang, J. L. (2017). Beneficial effects of protein hydrolysates in exercise and sports nutrition. Journal of Biological Regulators and Homeostatic Agents, 31(1), 183–188.

    CAS  PubMed  Google Scholar 

  • Zhao, H. W., Lv, J. P., & Li, S. R. (2011). Production of conjugated linoleic acid by whole-cell of Lactobacillus plantarum A6-1F. Biotechnology and Biotechnological Equipment, 25(1), 2266–2272.

    Article  CAS  Google Scholar 

  • Zoghi, A., Khosravi-Darani, K., & Omri, H. (2018). Process variables and design of experiments in liposome and nanoliposome research. Mini-Reviews in Medicinal Chemistry, 18(4), 324–344.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, S., et al. (2015). Recent research progress on microbial l-asparaginases. Applied Microbiology and Biotechnology, 99(3), 1069–1079.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iran Alemzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alemzadeh, I., Vaziri, A.S., Khosravi-Darani, K., Monsan, P. (2022). Enzymes in Functional Food Development. In: Dutt Tripathi, A., Darani, K.K., Srivastava, S.K. (eds) Novel Food Grade Enzymes . Springer, Singapore. https://doi.org/10.1007/978-981-19-1288-7_9

Download citation

Publish with us

Policies and ethics

Navigation