Metric Learning with Distillation for Overcoming Catastrophic Forgetting

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1566))

  • 603 Accesses

Abstract

In incremental learning, reducing catastrophic forgetting always adds additional weights to the classification layer when a new task comes. Moreover, it focuses on prediction accuracy, ignores mislabeling differences, and causes the learned features to be scattered. This paper removes the softmax and integrates depth metric learning to compute image embeddings, which doesn’t need to add extra weights or additional space for new classes. The distances of the data mapped in the old and new task spaces are calculated separately. Then, the distillation of depth metric learning is used to make the two distances as similar as possible to improve the performance of the old knowledge. The experimental results on Cifar10 and Tiny-ImageNet show that the proposed method can effectively alleviate catastrophic forgetting and enhance the effectiveness of incremental learning.

The work was supported by National Natural Science Foundation of China under Grants 61702383.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. ar**v preprint ar**v:1904.07734 (2019)

  2. Yu, L., et al.: Semantic drift compensation for class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6982–6991 (2020)

    Google Scholar 

  3. Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12183–12192 (2020)

    Google Scholar 

  4. Hu, J., Lu, J., Tan, Y.P.: Discriminative deep metric learning for face verification in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1875–1882 (2014)

    Google Scholar 

  5. **ng, E., Jordan, M., Russell, S.J., Ng, A.: Distance metric learning with application to clustering with side-information. Adv. Neural. Inf. Process. Syst. 15, 521–528 (2002)

    Google Scholar 

  6. Yu, L., Yazici, V.O., Liu, X., Weijer, J.V.D., Cheng, Y., Ramisa, A.: Learning metrics from teachers: compact networks for image embedding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2907–2916 (2019)

    Google Scholar 

  7. Wu, Y., et al.: Large scale incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 374–382 (2019)

    Google Scholar 

  8. Benjamin, A.S., Rolnick, D., Kording, K.: Measuring and regularizing networks in function space. ar**v preprint ar**v:1805.08289 (2018)

  9. Chaudhry, A., Gordo, A., Dokania, P.K., Torr, P., Lopez-Paz, D.: Using hindsight to anchor past knowledge in continual learning. ar**v preprint ar**v:2002.08165, vol. 2, no. 7 (2020)

  10. Hsu, Y.C., Liu, Y.C., Ramasamy, A., Kira, Z.: Re-evaluating continual learning scenarios: a categorization and case for strong baselines. ar**v preprint ar**v:1810.12488 (2018)

  11. Pentina, A., Lampert, C.H.: Lifelong learning with non-IID tasks. Adv. Neural. Inf. Process. Syst. 28, 1540–1548 (2015)

    Google Scholar 

  12. De Lange, M., et al.: Continual learning: a comparative study on how to defy forgetting in classification tasks. ar**v preprint ar**v:1909.08383, vol. 2, no. 6 (2019)

  13. Isele, D., Cosgun, A.: Selective experience replay for lifelong learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  14. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  15. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7(2), 123–146 (1995)

    Article  Google Scholar 

  16. Bengio, Y., LeCun, Y. (eds.): 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). https://openreview.net/group?id=ICLR.cc/2014

  17. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. ar**v preprint ar**v:1705.08690 (2017)

  18. Silver, D.L., Mercer, R.E.: The task rehearsal method of life-long learning: overcoming impoverished data. In: Cohen, R., Spencer, B. (eds.) AI 2002. LNCS (LNAI), vol. 2338, pp. 90–101. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47922-8_8

    Chapter  Google Scholar 

  19. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  20. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1320–1328 (2017)

    Google Scholar 

  21. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  22. Zenke, F., Poole, B., Ganguli, S.: Improved multitask learning through synaptic intelligence

    Google Scholar 

  23. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 139–154 (2018)

    Google Scholar 

  24. Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. ar**v preprint ar**v:1805.09733 (2018)

  25. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  26. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  27. DaWaK’10: Proceedings of the 12th International Conference on Data Warehousing and Knowledge Discovery. Springer, Heidelberg (2010)

    Google Scholar 

  28. Li, J., Zhao, R., Huang, J.T., Gong, Y.: Learning small-size DNN with output-distribution-based criteria. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  29. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. ar**v preprint ar**v:1503.02531 (2015)

  30. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5191–5198 (2020)

    Google Scholar 

  31. Cho, J.H., Hariharan, B.: On the efficacy of knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4794–4802 (2019)

    Google Scholar 

  32. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  33. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)

    Google Scholar 

  34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  35. Schwarz, J., et al.: Progress & compress: a scalable framework for continual learning. In: International Conference on Machine Learning, pp. 4528–4537. PMLR (2018)

    Google Scholar 

  36. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV), pp. 532–547 (2018)

    Google Scholar 

  37. Masana, M., Ruiz, I., Serrat, J., van de Weijer, J., Lopez, A.M.: Metric Learning for Novelty and Anomaly Detection. ar**v preprint ar**v:1808.05492 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, P., He, J., Min, Q., Zhu, Q. (2022). Metric Learning with Distillation for Overcoming Catastrophic Forgetting. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation