Transport Properties of Superconducting Materials

  • Chapter
  • First Online:
Superconducting Materials

Abstract

In superconducting materials, a phase transformation occurs at critical transition temperature, Tc, and they show zero resistivity below Tc. The relation between zero resistivity and superconducting properties is an interesting and important issue to understand the mechanism of superconductivity especially for high-Tcsuperconductors (HTSCs). To determine the behavior of superconducting materials under an applied magnetic field, many remarkable studies that have been conducted due to their great technological and industrial importance. The magnetic field causes a change in the transition temperature, the width of resistance transition and activation energy of superconducting materials. Energy dissipation is one of the important obstacles to obtain superconducting material with desired properties for practical industrial applications. Thus, some important models that make an explanation about the dissipation mechanism have been explained and interpreted. The critical current density has been discussed with early and recent models, experimental methods, and recent studies on HTSCs. In addition, a transverse voltage difference (the Hall voltage) can be observed in superconductor materials, especially in HTSCs, under perpendicular magnetic fields. But, the sign of Hall voltage becomes opposite to the ordinary Hall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H.K. Onnes, Commun. Phys. Lab. Univ. Leiden, 12(120) (1911)

    Google Scholar 

  2. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, Unites States of America, 1996)

    MATH  Google Scholar 

  3. C.P. Poole, H.A. Farach, R.J. Creswick, R. Prozorov, Superconductivity Elsevier (2007)

    Google Scholar 

  4. P. Klemens, G. Lowenthal, Aust. J. Phys. 14(3) (1961)

    Google Scholar 

  5. A. Matthiessen, C. Vogt, Philos. Trans. R. Soc. Lond. 154(1864)

    Google Scholar 

  6. J.V. Yakhmi, Introduction to Superconductivity, Superconducting Materials and Their Usefulness, in Superconducting Materials and Their Applications (2021)

    Google Scholar 

  7. D.K.C. MacDonald, Prog. Met. Phys. 3(1952)

    Google Scholar 

  8. L. Kelvin, London, Edinb. Dublin Philos. Mag. J. Sci. 3(15) (1902)

    Google Scholar 

  9. K.I. Wysokinski, Acta Phys. Pol. A 121(4) (2012)

    Google Scholar 

  10. J. Azoulay, Phys. Rev. B 44 (13) (1991)

    Google Scholar 

  11. V.A. Gasparov, H.S. Jeevan, P. Gegenwart, JETP Lett. 89(6) (2009)

    Google Scholar 

  12. R.K. Nkum, W.R. Datars, Phys. C: Superconduct. 192(1) (1992)

    Google Scholar 

  13. H.K. Onnes, Nobel Lect. 4 (1913)

    Google Scholar 

  14. A. Mourachkine, Room- Temperature superconductivity. Cambridge International Science Publishing (2004)

    Google Scholar 

  15. R. Caton, R. Viswanathan, Phys. Rev. B 25(1) (1982)

    Google Scholar 

  16. S. Ramakrishnan, G. Chandra, Phys. Lett. A 100(8) (1984)

    Google Scholar 

  17. R. **, H.R. Ott, D.P. Grindatto, Phys. C: Superconduct. 250(3) (1995)

    Google Scholar 

  18. B.S. Shastry, P. Mai, Phys. Rev. B 101(11) (2020)

    Google Scholar 

  19. S. Martin, et al., Phys. Rev. B 39(13) (1989)

    Google Scholar 

  20. D.W. Woodard, G.D. Cody, Phys. Rev. 136(1A) (1964)

    Google Scholar 

  21. M. Milewits, S.J. Williamson, H. Taub, Phys. Rev. B 13(12) (1976)

    Google Scholar 

  22. G.M. Carneiro, J. Phys.: Condens. Matter 3(20) (1991)

    Google Scholar 

  23. G. **ao, et al., Phys. Rev. B 39(1) (1989)

    Google Scholar 

  24. T. Ito, et al., Nature 350(6319) (1991)

    Google Scholar 

  25. Y. Singh, Int. J. Mod. Phys.: Conf. Ser. 22(2013)

    Google Scholar 

  26. L.B. Valdes, Proc. IRE, 42(2) (1954)

    Google Scholar 

  27. W. Thomson, Proc. Royal Soc. London (8) (1857)

    Google Scholar 

  28. S. Ornes, Proc. Natl. Acad. Sci. 110(10) (2013)

    Google Scholar 

  29. M.N. Baibich, et al., Phys. Rev. Lett. 61(21) (1988)

    Google Scholar 

  30. G. Binasch, et al., Phys. Rev. B 39(7) (1989)

    Google Scholar 

  31. P.A. Grünberg, Rev. Mod. Phys. 80(4) (2008)

    Google Scholar 

  32. S. **, et al., Science 264(5157) (1994)

    Google Scholar 

  33. R. Weiss, R. Mattheis, G. Reiss, Meas. Sci. Technol. 24(8) (2013)

    Google Scholar 

  34. State of the Art Magnetoresistance Based Magnetic Field Measurement Technologies, in Magnetic Field Measurement with Applications to Modern Power Grids. p. 25–51 (2019)

    Google Scholar 

  35. W. Woch, et al., J. Superconduct. Novel Magn. 30(3) (2017)

    Google Scholar 

  36. E. Hannachi, et al., J. Mater. Sci.: Mater. Electron. 30(9) (2019)

    Google Scholar 

  37. M.R. Mohammadizadeh, M. Akhavan, Supercond. Sci. Technol. 16(4) (2003)

    Google Scholar 

  38. D. Yazici, M. Erdem, B. Ozcelik, J. Superconduct. Novel Magn. 25(4) (2012)

    Google Scholar 

  39. G. Yildirim, et al., J. Superconduct. Novel Magn. 25(4) (2012)

    Google Scholar 

  40. M. Nikolo, et al., J. Superconduct. Novel Magn. 27(10) (2014)

    Google Scholar 

  41. A. Abou El Hassan, et al. Irreversibility line and thermally activated flux flow in Micro-bridges of high-temperature superconductor. in E3S Web of Conferences. 2021. EDP Sciences

    Google Scholar 

  42. T.T.M. Palstra, et al., Phys. Rev. B 41(10) (1990)

    Google Scholar 

  43. G.L. Bhalla, et al., Phys. C: Superconduct. 391(1) (2003)

    Google Scholar 

  44. B. Marchionini, et al., IEEE Trans. Appl. Superconduct. 27 (2017)

    Google Scholar 

  45. A.A. Abrikosov, J. Phys. Chem. Solids 2(3) (1957)

    Google Scholar 

  46. K. Kadowaki, et al., Phys. Rev. B 50(10) (1994)

    Google Scholar 

  47. Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Rev. 139 (4A) (1965)

    Google Scholar 

  48. H.J. Jensen, et al., Phys. Rev. B 38(13) (1988)

    Google Scholar 

  49. K.A. Müller, M. Takashige, J.G. Bednorz, Phys. Rev. Lett. 58(11) (1987)

    Google Scholar 

  50. G. Deutscher, K.A. Müller, Phys. Rev. Lett. 59(15) (1987)

    Google Scholar 

  51. I. Morgenstern, K.A. Müller, J.G. Bednorz, Phys. B: Condensed. Matt. 152(1) (1988)

    Google Scholar 

  52. V.N. Vieira, P. Pureur, J. Schaf, Phys. C: Superconduct. 353(3) (2001)

    Google Scholar 

  53. G.L. Bhalla, Pratima, Phys. C: Superconduct. 406(3) (2004)

    Google Scholar 

  54. M. Tinkham, Phys. Rev. Lett. 61(14) (1988)

    Google Scholar 

  55. R. Griessen, R.J. Wijngaarden, B. Dam. Magnetization Relaxation and Resistive Behaviour of High-Tc Superconductors BT—Advances in Superconductivity II. Tokyo: Springer Japan (1990)

    Google Scholar 

  56. M.A. Dubson, et al., Phys. Rev. Lett. 60 (11) (1988)

    Google Scholar 

  57. B. Oh, et al., Phys. Rev. B 37(13) (1988)

    Google Scholar 

  58. L. Miu, et al., Phys. Rev. B 57(5) (1998)

    Google Scholar 

  59. C. Paracchini, et al., Phys. C: Superconduct. 223(1) (1994)

    Google Scholar 

  60. E. Hannachi, et al., Phys. B: Condens. Matter 430(2013)

    Google Scholar 

  61. Y. Slimani, et al., J. Superconduct. Nov. Magn. 28(2) (2015)

    Google Scholar 

  62. T.T.M. Palstra, et al., Phys. Rev. Lett. 61(14) (1988)

    Google Scholar 

  63. D. Sharma, R. Kumar, V.P.S. Awana, Solid State Commun. 152(11) (2012)

    Google Scholar 

  64. Y.Z. Zhang, H.H. Wen, Z. Wang, Phys. Rev. B 74(14) (2006)

    Google Scholar 

  65. M. Akyol, et al., Bull. Mater. Sci. 38(5) (2015)

    Google Scholar 

  66. Y. Jang Song, et al., EPL (Europhys. Lett.) 97(4) (2012)

    Google Scholar 

  67. S.D. Kaushik, V. Braccini, S. Patnaik, Pramana, 71(6) (2008)

    Google Scholar 

  68. J.T. Kucera, et al., Phys. Rev. B 46(17) (1992)

    Google Scholar 

  69. Y.Z. Zhang, Z.A. Ren, Z.X. Zhao, Supercond. Sci. Technol. 22(6) (2009)

    Google Scholar 

  70. S. Martin, et al., Phys. Rev. Lett. 62(6) (1989)

    Google Scholar 

  71. P.C.E. Stamp, L. Forro, C. Ayache, Phys. Rev. B 38(4) (1988)

    Google Scholar 

  72. N.C. Yeh, C.C. Tsuei, Phys. Rev. B 39(13) (1989)

    Google Scholar 

  73. B.I. Halperin, D.R. Nelson, J. Low Temp. Phys. 36(5) (1979)

    Google Scholar 

  74. D. Dew-Hughes, Low Temp. Phys. 27(9) (2001)

    Google Scholar 

  75. V. Selvaanicam, App. Phys. Let. 106(3) (2015)

    Google Scholar 

  76. T. Matsushita, Measurement methods for critical current density, in Flux Pinning in Superconductors. (Springer, Berlin, Heidelberg, 2014), pp. 189–209

    Chapter  Google Scholar 

  77. T. Shibata, S.-I. Sakai, J. Phys.: Conf. Ser. 744 (2016)

    Google Scholar 

  78. C.P. Bean, Phys. Rev. Lett. 8(6) (1962)

    Google Scholar 

  79. D. Larbalestier, et al., Ar**v (2013)

    Google Scholar 

  80. M. Miura, et al., Nat. Commun. 4(2013)

    Google Scholar 

  81. T. Matsushita, Flux Pinning in Superconductors. Springer (2007)

    Google Scholar 

  82. P. Chaddah, Sadhana, 28(1) (2003)

    Google Scholar 

  83. C.B. Eom, et al., Nature 411(6837) (2001)

    Google Scholar 

  84. X. Xu, Supercond. Sci. Technol. 30(9) (2017)

    Google Scholar 

  85. E.H. Hall, Am. J. Math. 2(3) (1879)

    Google Scholar 

  86. W.A. Reed, E. Fawcett, Y.B. Kim, Phys. Rev. Lett. 14 (19) (1965)

    Google Scholar 

  87. A.G. Aronov, A.B. Raporot, Mod. Phys. Lett. B 06(16n17) (1992)

    Google Scholar 

  88. A. Freimuth, C. Hohn, M. Galffy, Phys. Rev. B 44(18) (1991)

    Google Scholar 

  89. A.G. Aronov, S. Hikami, Phys. Rev. B 41(13) (1990)

    Google Scholar 

  90. N.B. Kopnin, Phys. Rev. B 54(13) (1996)

    Google Scholar 

  91. Z.D. Wang, J. Dong, C.S. Ting, Phys. Rev. Lett. 72(24) (1994)

    Google Scholar 

  92. Y. Kato, J. Phys. Soc. Jpn. 68(12) (1999)

    Google Scholar 

  93. J. Kolác̆ek, P. Vas̆ek, Phys. C: Supercond. 336(3) (2000)

    Google Scholar 

  94. S. Ullah, A.T. Dorsey, Phys. Rev. B 44(1) (1991)

    Google Scholar 

  95. T. Nishio, H. Ebisawa, Phys. C: Supercond. 290(1) (1997)

    Google Scholar 

  96. K. Michaeli, K.S. Tikhonov, A.M. Finkel'stein, Phys. Rev. B 86(1) (2012)

    Google Scholar 

  97. P. Ao, D.J. Thouless, Phys. Rev. Lett. 70(14) (1993)

    Google Scholar 

  98. D.I. Khomskii, A. Freimuth, Phys. Rev. Lett. 75(7) (1995)

    Google Scholar 

  99. S.Y.F. Zhao, et al., Phys. Rev. Lett. 122(24) (2019)

    Google Scholar 

  100. K. Nakao, et al., Phys. Rev. B 57(14) (1998)

    Google Scholar 

  101. J.I. Martín, et al., Phys. Rev. B 55(9) (1997)

    Google Scholar 

  102. K. Kobayashi, JPSJ News Comments 16 (2019)

    Google Scholar 

  103. P. Dang, et al., Sci. Adv. 7 (8) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Ekicibil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ekicibil, A. et al. (2022). Transport Properties of Superconducting Materials. In: Slimani, Y., Hannachi, E. (eds) Superconducting Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-1211-5_2

Download citation

Publish with us

Policies and ethics

Navigation