Fabrication Technologies of Superconducting Cables and Wires

  • Chapter
  • First Online:
Superconducting Materials
  • 1450 Accesses

Abstract

Nowadays, MRI and NMR magnets, high magnetic fields measurement devices, high-field magnets for accelerators or for nuclear fusion equipment are some examples that largely utilize superconducting cables and wires, which are largely made of the low-temperature superconducting materials (LTS) Nb3Sn and Nb-Ti. The high-temperature superconductors (HTS), with critical temperature exceeding 77 K, displayed very great values of critical current density (Jc), and critical magnetic field (Bc2). Therefore, the ability to utilize cryo-free cooling or liquid nitrogen-based systems for HTS tapes is leading to significant advancements in technical applications like power transmission lines. Among HTS materials, BSCCO was easily made in the forms of round wires and tapes. However, making REBCO into the form of tapes faced some challenges due to the high production cost. Numerous investigations have been focused on these kinds of materials and further developments are still under progress for better industrialization and commercialization. MgB2 superconductor (having Tc ⁓ 39 K) has also the opportunity to be a low-cost superconductor, which can operate at lower refrigerating costs. Promising Jc values have also been attained by the new family of iron-based superconductors (called as pnictides). However, very few studies were performed on tapes based on MgB2 and pnictide materials. The present chapter summarizes the most important requirements for superconducting cables and wires. Then, based on the kind and family of materials, the main manufacturing processes/technologies and recent developments for superconducting tapes and wires are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G.B. Yntema, Niobium superconducting magnets. IEEE Trans. Magn. 23, 390–395 (1987). https://doi.org/10.1109/TMAG.1987.1065154

    Article  ADS  Google Scholar 

  2. M.K. Ben Salem, E. Hannachi, Y. Slimani, A. Hamrita, M. Zouaoui, L. Bessais, M. Ben Salem, F. Ben Azzouz, SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy. Ceram. Int. 40, 4953–4962 (2014). https://doi.org/10.1016/j.ceramint.2013.10.103

  3. Y. Slimani, M.A. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal, F. Ben Azzouz, Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor, Ceram. Int. 45, 6828–6835 (2019). https://doi.org/10.1016/j.ceramint.2018.12.176

  4. A. Hamrita, Y. Slimani, M.K. Ben Salem, E. Hannachi, L. Bessais, F. Ben Azzouz, M. Ben Salem, Superconducting properties of polycrystalline YBa2Cu3O7—D prepared by sintering of ball-milled precursor powder. Ceram. Int. 40, 1461–1470 (2014). https://doi.org/10.1016/j.ceramint.2013.07.030

  5. Plots—Comparisons of superconductor critical current densities—MagLab (2018), https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots

  6. P.F. Chester, Superconducting magnets. Rep. Prog. Phys. 30, 561–614 (1967). https://doi.org/10.1088/0034-4885/30/2/305

    Article  ADS  Google Scholar 

  7. P.J. Lee, D.C. Larbalestier, An examination of the properties of SSC phase II R&D strands. IEEE Trans. Appl. Supercond. 3, 833–841 (1993). https://doi.org/10.1109/77.233833

    Article  ADS  Google Scholar 

  8. E. Hannachi, M.K. Ben Salem, Y. Slimani, A. Hamrita, M. Zouaoui, F. Ben Azzouz, M. Ben Salem, Dissipation mechanisms in polycrystalline YBCO prepared by sintering of ball-milled precursor powder. Phys. B Condens. Matter. 430, 52–57 (2013). https://doi.org/10.1016/J.PHYSB.2013.08.028

  9. R. Algarni, M.A. Almessiere, Y. Slimani, E. Hannachi, F. Ben Azzouz, Enhanced critical current density and flux pinning traits with Dy2O3 nanoparticles added to YBa2Cu3O7-d superconductor. J. Alloys Compd. 852, 157019 (2021). https://doi.org/10.1016/J.JALLCOM.2020.157019

  10. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Manikandan, R. Algarni, A. Baykal, F. Ben Azzouz, Flux pinning properties of YBCO added by WO3 nanoparticles. J. Alloys Compd. 810, 151884 (2019). https://doi.org/10.1016/j.jallcom.2019.151884

  11. Y. Slimani, E. Hannachi, A. Ekicibil, M.A. Almessiere, F. Ben Azzouz, Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloys Compd. 781, 664–673 (2019). https://doi.org/10.1016/j.jallcom.2018.12.062

  12. L. Bottura, A. Godeke, Superconducting materials and conductors: fabrication and limiting parameters. Rev. Accel. Sci. Technol. 05, 25–50 (2012). https://doi.org/10.1142/s1793626812300022

    Article  Google Scholar 

  13. C. Senatore, M. Alessandrini, A. Lucarelli, R. Tediosi, D. Uglietti, Y. Iwasa, Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors. Supercond. Sci. Technol. 27, 103001 (2014). https://doi.org/10.1088/0953-2048/27/10/103001

  14. N. Cheggour, X.F. Lu, T.G. Holesinger, T.C. Stauffer, J. Jiang, L.F. Goodrich, Reversible effect of strain on transport critical current in Bi2Sr2CaCu2O8+x superconducting wires: a modified descriptive strain model. Supercond. Sci. Technol. 25, 015001 (2012). https://doi.org/10.1088/0953-2048/25/1/015001

  15. K.I. Sato, S.I. Kobayashi, T. Nakashima, Present status and future perspective of bismuth-based high-temperature superconducting wires realizing application systems. Jpn. J. Appl. Phys. 51, 010006 (2012). https://doi.org/10.1143/JJAP.51.010006/XML

  16. L. Muzzi, G. De Marzi, A. Di Zenobio, A. Della Corte, Cable-in-conduit conductors: lessons from the recent past for future developments with low and high temperature superconductors. Supercond. Sci. Technol. 28, 053001 (2015). https://doi.org/10.1088/0953-2048/28/5/053001

  17. Completion of first Tokamak hardware acknowledged (n.d.), https://www.iter.org/newsline/141/354

  18. E. Barzi, N. Andreev, G. Apollinari, F. Bucciarelli, V. Lombardo, F. Nobrega, D. Turrioni, R. Yamada, A.V. Zlobin, Superconducting strand and cable development for the LHC upgrades and beyond. IEEE Trans. Appl. Supercond. 23, 6001112–6001112 (2013). https://doi.org/10.1109/TASC.2013.2240038

    Article  ADS  Google Scholar 

  19. H. Kanithi, M. Erdmann, P. Valaris, F. Krahula, R. Lusk, E. Gregory, B. Zeitlin, A status report on the development of inner and outer conductors for the SSC dipole and quadrupole magnets. Supercollider 2, 601–609 (1990). https://doi.org/10.1007/978-1-4615-3728-1_55

    Article  Google Scholar 

  20. E. Gregory, T.S. Kreilick, J. Wong, A.K. Ghosh, W.B. Sampson, Importance of spacing in the development of high current densities in multifilamentary superconductors. Cryogenics (Guildf.) 27, 178–182 (1987). https://doi.org/10.1016/0011-2275(87)90016-6

    Article  ADS  Google Scholar 

  21. A.K. Ghosh, W.B. Sampson, E. Gregory, T.S. Kreilick, Anomalous low field magnetization in fine filament NbTi conductors. IEEE Trans. Magn. 23, 1724–1727 (1987). https://doi.org/10.1109/TMAG.1987.1064987

    Article  ADS  Google Scholar 

  22. P.J. Lee, J.C. McKinnell, D.C. Larbalestier, Restricted, Novel Heat Treatments for Obtaining High Jc in Nb 46.5 wt% Ti (Springer, Boston, MA, 1990). https://doi.org/10.1007/978-1-4613-9880-6_37

  23. C. Meingast, P.J. Lee, D.C. Larbalestier, Quantitative description of a high Jc Nb‐Ti superconductor during its final optimization strain. I. Microstructure, Tc, Hc2, and resistivity, J. Appl. Phys. 66, 5962 (1998). https://doi.org/10.1063/1.343624

  24. T. Kato, H. Tsuji, T. Ando, Y. Takahashi, H. Nakajima, M. Sugimoto et al., First test results for the ITER central solenoid model coil. Fusion Eng. Des. 56–57, 59–70 (2001). https://doi.org/10.1016/S0920-3796(01)00235-6

    Article  Google Scholar 

  25. A. Kikuchi, Y. Iijima, K. Inoue, M. Kosuge, New Nb3Al conductor made by DRHQ process. AIP Conf. Proc. 614, 1025 (2002). https://doi.org/10.1063/1.1472645

    Article  ADS  Google Scholar 

  26. A. Godeke, A. den Ouden, A. Nijhuis, H.H.J. ten Kate, State of the art powder-in-tube niobium–tin superconductors. Cryogenics (Guildf.) 48, 308–316 (2008). https://doi.org/10.1016/J.CRYOGENICS.2008.04.003

    Article  ADS  Google Scholar 

  27. A. Godek, Performance boundaries in Nb3Sn superconductors. Ph.D. thesis (University of Twente, Enschede, The Netherlands, 2005)

    Google Scholar 

  28. C.M. Fischer, Investigation of the relationships between superconducting properties and Nb3Sn reaction conditions in powder-in-tube Nb3Sn conductors. Master thesis (University of Wisconsin-Madison, US, 2002)

    Google Scholar 

  29. P. Fabbricatore, S. Farinon, V. Corato, G. De Marzi, T. Spina, U. Gambardella, A. Saggese, Experimental investigation of the transverse resistivity in Nb3Sn wires through ac susceptibility. Supercond. Sci. Technol. 26, 085001 (2013). https://doi.org/10.1088/0953-2048/26/8/085001

  30. D.R. Dietderich, A. Godeke, Nb3Sn research and development in the USA—wires and cables. Cryogenics (Guildf.) 48, 331–340 (2008). https://doi.org/10.1016/J.CRYOGENICS.2008.05.004

    Article  ADS  Google Scholar 

  31. P.J. Lee, D.C. Larbalestier, Microstructural factors important for the development of high critical current density Nb3Sn strand. Cryogenics (Guildf.) 48, 283–292 (2008). https://doi.org/10.1016/J.CRYOGENICS.2008.04.005

    Article  ADS  Google Scholar 

  32. Y. Yamada, N. Ayai, K. Takahashi, K. Sato, M. Sugimoto, T. Ando, Y. Takahashi, M. Nishi, Development of Nb3Al/Cu multifilamentary superconductors. Adv. Cryog. Eng. Mater. 40, 907–914 (1994). https://doi.org/10.1007/978-1-4757-9053-5_116

    Article  Google Scholar 

  33. F. Hosono, G. Iwaki, K. Kikuchi, S. Ishida, T. Ando, K. Kizu, Y. Miura, A. Sakasai, Production of a 11 km long jelly roll processed Nb3Al strand with high copper ratio of 4 for fusion magnets. IEEE Trans. Appl. Supercond. 12, 1037–1040 (2002). https://doi.org/10.1109/TASC.2002.1018578

    Article  ADS  Google Scholar 

  34. C. Chen, Z.M. Bai, X.F. Pan, L.J. Cui, G. Yan, P.X. Zhang, Superconducting properties of jelly-roll Nb3Al short wire prepared by rapid heating, quenching, and transformation method. IEEE Trans. Appl. Supercond. 26, 1–5 (2016). https://doi.org/10.1109/TASC.2016.2594264

    Article  Google Scholar 

  35. Y. Iijima, M. Kosuge, T. Takeuchi, K. Inoue, Nb3Al multifilamentary wires continuously fabricated by rapid-quenching, in Advances in Cryogenic Engineering Materials (Springer US, Boston, MA, 1994), pp. 899–905. https://doi.org/10.1007/978-1-4757-9053-5_115

  36. T. Takeuchi, N. Banno, T. Fukuzaki, H. Wada, Large improvement in high-field critical current densities of Nb3Al conductors by the transformation-heat-based up-quenching method. Supercond. Sci. Technol. 13, L11 (2000). https://doi.org/10.1088/0953-2048/13/10/101

    Article  ADS  Google Scholar 

  37. A. Kikuchi, Y. Iijima, K. Inoue, Microstructures of rapidly-heated/quenched and transformed Nb3Al multifilamentary superconducting wires. IEEE Trans. Appl. Supercond. 11, 3615–3618 (2001). https://doi.org/10.1109/77.919847

    Article  ADS  Google Scholar 

  38. A. Kikuchi, Y. Iijima, K. Inoue, Nb3Al conductor fabricated by DRHQ (double rapidly-heating/quenching) process. IEEE Trans. Appl. Supercond. 3968–3971 (2001). https://doi.org/10.1109/77.919950

  39. J. Jiang, A. Francis, R. Alicea, M. Matras, F. Kametani, U.P. Trociewitz, E.E. Hellstrom, D.C. Larbalestier, Effects of filament size on critical current density in overpressure processed Bi-2212 round wire. IEEE Trans. Appl. Supercond. 27, 1–4 (2017). https://doi.org/10.1109/TASC.2016.2627817

    Article  Google Scholar 

  40. D.C. Larbalestier, J. Jiang, U.P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N.C. Craig, P.J. Lee, E.E. Hellstrom, Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat. Mater. 13, 375–381 (2014). https://doi.org/10.1038/nmat3887

  41. H. Miao, Y. Huang, M. Meinesz, S. Hong, J. Parrell, Development of Bi-2212 round wires for high field magnet applications. AIP Conf. Proc. 1435, 315 (2012). https://doi.org/10.1063/1.4712111

    Article  ADS  Google Scholar 

  42. D.C. Larbalestier, J. Jiang, U.P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N.C. Craig, P.J. Lee, E.E. Hellstrom, A transformative superconducting magnet technology for fields well above 30 T using isotropic round wire multifilament Bi2Sr2CaCu2O8-x conductor (2013), Ar**v1305.1269

    Google Scholar 

  43. Jianyi Jiang, Han** Miao, Yibing Huang, Seung Hong, J.A. Parrell, C. Scheuerlein, M. Di Michiel, A.K. Ghosh, U.P. Trociewitz, E.E. Hellstrom, D.C. Larbalestier, Reduction of gas bubbles and improved critical current density in Bi-2212 round wire by swaging. IEEE Trans. Appl. Supercond. 23, 6400206–6400206 (2013). https://doi.org/10.1109/TASC.2013.2237873.

  44. F. Kametani, J. Jiang, M. Matras, D. Abraimov, E.E. Hellstrom, D.C. Larbalestier, Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development. Sci. Rep. 5, 8285 (2015). https://doi.org/10.1038/srep08285

    Article  ADS  Google Scholar 

  45. A. Ballarino, Large-capacity current leads. Phys. C Supercond. 468, 2143–2148 (2008). https://doi.org/10.1016/J.PHYSC.2008.05.217

    Article  ADS  Google Scholar 

  46. Nexans—Superconductors—Nexans interconnects central Chicago (n.d.), https://www.nexans.com/newsroom/news/details/2020/06/nexans-wins-amsc-contract-chicago-resilient-electric-grid-project.html

  47. E. Hannachi, Y. Slimani, A. Ekicibil, A. Manikandan, F. Ben Azzouz, Magneto-resistivity and magnetization investigations of YBCO superconductor added by nano-wires and nano-particles of titanium oxide. J. Mater. Sci. Mater. Electron. 30, 8805–8813 (2019). https://doi.org/10.1007/s10854-019-01205-3

  48. Y. Slimani, E. Hannachi, M.K. Ben Salem, A. Hamrita, M. Ben Salem, F. Ben Azzouz, Fluctuation induced magneto-conductivity of Y3Ba5Cu8O18±x and YBa2Cu3O7-d. Mod. Phys. Lett. B. 29, 1550227 (2015). https://doi.org/10.1142/S0217984915502279

  49. S.I.-F. Group, 2G HTS Wire Specification (n.d.), https://www.superpower-inc.com/specification.aspx

  50. A. Goyal, D.P. Norton, D.M. Kroeger, D.K. Christen, M. Paranthaman, E.D. Specht, J.D. Budai, Q. He, B. Saffian, F.A. List, D.F. Lee, E. Hatfield, P.M. Martin, C.E. Klabunde, J. Mathis, C. Park, Conductors with controlled grain boundaries: an approach to the next generation, high temperature superconducting wire. J. Mater. Res. 12, 2924–2940 (1997). https://doi.org/10.1557/JMR.1997.0387

    Article  ADS  Google Scholar 

  51. G. De Marzi, L. Muzzi, P.J. Lee, Superconducting wires and cables: materials and processing, in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-803581-8.01917-2

  52. G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini, A.S. Siri, M.R. Cimberle, Large transport critical currents in unsintered MgB2 superconducting tapes. Appl. Phys. Lett. 79, 230 (2001). https://doi.org/10.1063/1.1384905

    Article  ADS  Google Scholar 

  53. M.A. Susner, Y. Yang, M.D. Sumption, E.W. Collings, M.A. Rindfleisch, M.J. Tomsic, J.V. Marzik, Enhanced critical fields and superconducting properties of pre-doped B powder-type MgB2 strands. Supercond. Sci. Technol. 24, 012001 (2010). https://doi.org/10.1088/0953-2048/24/1/012001

  54. G. Giunchi, S. Ceresara, G. Ripamonti, A. Di Zenobio, S. Rossi, S. Chiarelli, M. Spadoni, R. Wesche, P.L. Bruzzone, High performance new MgB2 superconducting hollow wires. Supercond. Sci. Technol. 16, 285 (2003). https://doi.org/10.1088/0953-2048/16/2/328

    Article  ADS  Google Scholar 

  55. G.Z. Li, M.D. Sumption, M.A. Susner, Y. Yang, K.M. Reddy, M.A. Rindfleisch, M.J. Tomsic, C.J. Thong, E.W. Collings, The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires. Supercond. Sci. Technol. 25, 115023 (2012). https://doi.org/10.1088/0953-2048/25/11/115023

  56. A.B. Abrahamsen, N. Magnusson, B.B. Jensen, D. Liu, H. Polinder, Design of an MgB2 race track coil for a wind generator pole demonstration. J. Phys. Conf. Ser. 507, 032001 (2014). https://doi.org/10.1088/1742-6596/507/3/032001

  57. A. Ballarino, Development of superconducting links for the large hadron collider machine. Supercond. Sci. Technol. 27, 044024 (2014). https://doi.org/10.1088/0953-2048/27/4/044024

  58. Y. Lvovsky, E.W. Stautner, T. Zhang, Novel technologies and configurations of superconducting magnets for MRI. Supercond. Sci. Technol. 26, 093001 (2013). https://doi.org/10.1088/0953-2048/26/9/093001

  59. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x= 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008). https://doi.org/10.1021/ja800073m

  60. Y. Ma, Progress in wire fabrication of iron-based superconductors. Supercond. Sci. Technol. 25, 113001 (2012). https://doi.org/10.1088/0953-2048/25/11/113001

  61. X. Zhang, C. Yao, H. Lin, Y. Cai, Z. Chen, J. Li, C. Dong, Q. Zhang, D. Wang, Y. Ma, H. Oguro, S. Awaji, K. Watanabe, Realization of practical level current densities in Sr0.6K0.4Fe2As2 tape conductors for high-field applications. Appl. Phys. Lett. 104, 202601 (2014). https://doi.org/10.1063/1.4879557.

  62. J.D. Weiss, C. Tarantini, J. Jiang, F. Kametani, A.A. Polyanskii, D.C. Larbalestier, E.E. Hellstrom, High intergrain critical current density in fine-grain (Ba0.6K0.4)Fe2As2 wires and bulks. Nat. Mater. 11, 682–685 (2012). https://doi.org/10.1038/nmat3333

  63. M. Palombo, A. Malagoli, M. Pani, C. Bernini, P. Manfrinetti, A. Palenzona, M. Putti, Exploring the feasibility of Fe(Se, Te) conductors by ex-situ powder-in-tube method. J. Appl. Phys. 117, 213903 (2015). https://doi.org/10.1063/1.4921902

  64. W. Si, S.J. Han, X. Shi, S.N. Ehrlich, J. Jaroszynski, A. Goyal, Q. Li, High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla. Nat. Commun. 4, 1347 (2013). https://doi.org/10.1038/ncomms2337

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Slimani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slimani, Y., Hannachi, E. (2022). Fabrication Technologies of Superconducting Cables and Wires. In: Slimani, Y., Hannachi, E. (eds) Superconducting Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-1211-5_10

Download citation

Publish with us

Policies and ethics

Navigation