On Nonparametric Density Estimation for Circular Data: An Overview

  • Chapter
  • First Online:
Directional Statistics for Innovative Applications

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 660 Accesses

Abstract

This paper provides a short review of modern smoothing methods for density and distribution functions dealing with circular data. We highlight the usefulness of circular kernels for smooth density estimation in this context and contrast it with smooth density estimation based on orthogonal series. It is seen that the wrapped Cauchy kernel as a choice of circular kernel appears as a natural candidate as it has a close connection to orthogonal series density estimation on a unit circle. In the literature, the use of von Mises circular kernel is investigated, which requires the numerical computation of the Bessel function. On the other hand, the wrapped Cauchy kernel is much simpler to use. This adds further weight to the considerable role of the wrapped Cauchy distribution in circular statistics. We also investigate some transformation-based methods in adapting the linear kernel density estimator to the circular data. This is very useful in practice as widely available software on linear kernel density estimation can easily be adapted to the circular case. These simpler methods are illustrated using some real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, T., Pewsey, A., Shimizu, K.: On Papakonstantinou’s extension of the cardioid distribution. Statist. Prob. Lett. 79, 2138–2147 (2009)

    Article  MathSciNet  Google Scholar 

  2. Babu, G.J., Canty, A., Chaubey, Y.P.: Application of Bernstein polynomials for smooth estimation of a distribution and density function. J. Statist. Plann. Inference 105, 377–392 (2002)

    Article  MathSciNet  Google Scholar 

  3. Babu, G.J., Chaubey, Y.P.: Smooth estimation of a distribution and density function on hypercube using Bernstein polynomials for dependent random vectors. Statist. Prob. Lett. 76, 959–969 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z.D., Rao, C.R., Zhao, L.C.: Kernel estimators of density function of directional data. J. Multivariate Anal. 27, 24–39 (1988)

    Article  MathSciNet  Google Scholar 

  5. Batschelet, E.: Circular Statistics in Biology. Academic Press, London (1981)

    MATH  Google Scholar 

  6. Buckland, S.T.: Fitting density functions with polynomials. J. Royal Statist. Soc. A41, 63–76 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Cao, Y.: On Transformation Based Circular Density Estimators. MSc. Thesis, Concordia University (2018). https://spectrum.library.concordia.ca/983905/1/Cao_MSc_f2018.pdf

  8. Carnicero, J.A., Wiper, M.P., Ausín, M.C.: Circular Bernstein polynomial distributions. In: Working Paper 10-25, Statistics and Econometrics Series 11, Departamento de Estadística Universidad Carlos III de Madrid (2010). https://e-archivo.uc3m.es/bitstream/handle/10016/8318/ws102511.pdf?sequence=1

  9. Cartwright, D.E.: The use of directional spectra in studying the output of a wave recorder on a moving ship. In: Ocean Wave Spectra, pp. 203–218. Prentice-Hall, Englewood Cliffs, NJ (1963)

    Google Scholar 

  10. Čencov, N.N.: Evaluation of an unknown distribution density from observations. Soviet Math. Doklady 3, 1559–1562 (1962)

    Google Scholar 

  11. Čencov, N.N.: Statistical Decision Rules and Optimum Inference. Springer, New York (1980)

    Google Scholar 

  12. Chaubey, Y.P.: Smooth kernel estimation of a circular density function: a connection to orthogonal polynomials on the unit circle. J. Prob. Statist. (2018) Article ID 5372803.https://doi.org/10.1155/2018/5372803

  13. Chaubey, Y.P., Li, J., Sen, A., Sen, P.K.: A new smooth density estimator for non-negative random variables. J. Indian Statist. Assoc. 50, 83–104 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Devroye, L., Györfi, L.: Nonparametric Density Estimation: The \(L_1\) View. John Wiley & Sons, New York (1985)

    MATH  Google Scholar 

  15. Devroye, L., Györfi, L.: Combinatorial Methods in Density Estimation. Springer, New York (2001)

    Book  Google Scholar 

  16. Di Marzio, M., Panzera, A., Taylor, C.C.: Local polynomial regression for circular predictors. Statist. Prob. Lett. 79(19), 2066–2075 (2009)

    Article  MathSciNet  Google Scholar 

  17. Di Marzio, M., Panzera, A., Taylor, C.C.: Kernel density estimation on the torus. J. Statist. Plann. Inference 141, 2156–2173 (2011)

    Article  MathSciNet  Google Scholar 

  18. Efromvich, S.: Nonparametric Curve Estimation: Methods, Theory, and Applications. Springer, New York (1999)

    Google Scholar 

  19. Efromvich, S.: Orthogonal series density estimation. Wiley Interdisc. Rev. 2, 467–476 (2010)

    Article  Google Scholar 

  20. Eğecioğlu, Ö., Srinivasan, A.: Efficient nonparametric density estimation on the sphere with applications in fluid mechanics. SIAM J. Sci. Comput. 22, 152–176 (2000)

    Article  MathSciNet  Google Scholar 

  21. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II. John Wiley & Sons, New York (1965)

    MATH  Google Scholar 

  22. Fernández-Durán, J.J.: Circular distributions based on nonnegative trigonometric sums. Biometrics 60, 499–503 (2004)

    Article  MathSciNet  Google Scholar 

  23. Fisher, N.I.: Smoothing a sample of circular data. J. Struct. Geol. 11, 775–778 (1989)

    Article  Google Scholar 

  24. Fisher, N.I.: Statistical Analysis Circular Data. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  25. Hall, P.: Estimating a density on the positive half line by the method of orthogonal series. Ann. Inst. Statist. Math. 32, 351–362 (1980)

    Article  MathSciNet  Google Scholar 

  26. Hall, P.: On trigonometric series estimates of densities. Ann. Statist. 9, 683–685 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Hall, P., Watson, G.P., Cabrera, J.: Kernel density estimation for spherical data. Biometrika 74(4), 751–762 (1987)

    Article  MathSciNet  Google Scholar 

  28. Hart, J.D.: Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New York (1997)

    Book  Google Scholar 

  29. Jammalamadaka, S.R., SenGupta, A.: Topics in Circular Statistics. World Scientific, Singapore (2001)

    Book  Google Scholar 

  30. Klemelä, J.: Estimation of densities and derivatives of densities with directional data. J. Multivariate Anal. 73, 18–40 (2000)

    Article  MathSciNet  Google Scholar 

  31. Mardia, K.V.: Statistics of directional data. J. Royal Statist. Soc. Ser. B Methodol. 37, 349–393 (1975)

    MathSciNet  MATH  Google Scholar 

  32. Mhaskar, H.N., Pai, D.V.: Fundamentals of Approximation Theory. Narosa Publishing House, New Delhi (2000)

    MATH  Google Scholar 

  33. Mooney, A., Helms, P.J., Jolliffe, I.T.: Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome. Comput. Statist. Data Anal. 41, 505–513 (2003)

    Google Scholar 

  34. Oliveira, M., Crujeiras, R.M., Rodríguez-Casal, A.: A plug-in rule for bandwidth selection in circular density estimation. Comput. Statist. Data Anal. 56, 3898–3908 (2012)

    Google Scholar 

  35. Oliveira, M., Crujeiras, R. M., Rodríguez-Casal, A.: NPCirc: Nonparametric Circular Methods. R package version 2.0.1 (2014). http://www.CRAN.R-project.org/package=NPCirc

  36. Papakonstantinou, V.: Beiträge zur zirkulären Statistik. Ph.D. dissertation, University of Zurich, Switzerland (1979)

    Google Scholar 

  37. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33, 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  38. Prakasa Rao, B.L.S.: Non Parametric Functional Estimation. Academic Press, Orlando, Florida (1983)

    MATH  Google Scholar 

  39. Rudzkis, R., Radavicius, M.: Adaptive estimation of distribution density in the basis of algebraic polynomials. Theor. Prob. Appl. 49, 93–109 (2005)

    Article  MathSciNet  Google Scholar 

  40. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27, 832–837 (1956)

    Article  MathSciNet  Google Scholar 

  41. Seshadri, V.: A family of distributions related to the McCullagh family. Statist. Prob. Lett. 12, 373–378 (1991)

    Article  MathSciNet  Google Scholar 

  42. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory. American Mathematical Society, Providence, Rhode Island (2005)

    MATH  Google Scholar 

  43. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, London (1986)

    MATH  Google Scholar 

  44. Tarter, M.E., Lock, M.D.: Model-Free Curve Estimation. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  45. Taylor, C.C.: Automatic bandwidth selection for circular density estimation. Comput. Statist. Data Anal. 52, 3493–3500 (2008)

    Article  MathSciNet  Google Scholar 

  46. Trefthen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    Google Scholar 

  47. Vitale, R.A.: A Bernstein polynomial approach to density estimation. In: Puri, M.L. (Eds.), Inference, Statistical, Topics, Related, vol. 2, pp. 87–100. Academic Press, New York (1975)

    Google Scholar 

  48. Walter, G.G.: Properties of Hermite series estimation of probability density. Ann. Stat. 5, 1258–1264 (1977)

    Google Scholar 

  49. Walter, G.G.: Wavelets and Other Orthogonal Systems with Applications. CRC Press, London (1994)

    Google Scholar 

Download references

Acknowledgements

The author is thankful to anonymous reviewers for helpful comments that have helped to improve the presentation of this paper. The partial support for this research from the Natural Sciences and Engineering Research Council of Canada through a Discovery Grant to the author is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogendra P. Chaubey .

Editor information

Editors and Affiliations

Appendix: Some Preliminary Results from Complex Analysis

Appendix: Some Preliminary Results from Complex Analysis

Let \(\mathbb {D}\) be the open unit disk, \(\{z~| ~|z|<1\},\) in \(\mathbb {Z}\) and let \(\mu \) be a continuous measure defined on the boundary \(\partial \mathbb {D},\) i.e., the circle \(\{z~|~ |z|=1\}.\) The point \(z\in \mathbb {D}\) will be represented by \(z=r\mathrm{e}^{i\theta }\) for \(r\in [0,1), \theta \in [0,2\pi )\) and \(i=\sqrt{-1}.\)

A standard result in complex analysis involves the Poisson representation that involves the real and complex Poisson kernels that are defined as

$$\begin{aligned} P_r(\theta ,\varphi )=\frac{1-r^2}{1+r^2-2r\cos (\theta -\varphi )} \end{aligned}$$
(33)

for \(\theta ,\varphi \in [0,2\pi )\) and \(r\in [0,1)\) and by

$$\begin{aligned} C(z,\omega )=\frac{\omega +z}{\omega -z} \end{aligned}$$
(34)

for \(\omega \in \partial \mathbb {D}\) and \(z\in \mathbb {D}.\) The connection between the kernels (33) and (34) is given by the fact that

$$\begin{aligned} P_r(\theta ,\varphi )=\mathrm{Re} ~C(r\mathrm{e}^{i\theta },\mathrm{e}^{i\varphi })=(2\pi ) f_{WC}(\theta ;\varphi ,\rho ). \end{aligned}$$
(35)

The Poisson representation says that if g is analytic in a neighborhood of \(\bar{\mathbb {D}}\) with g(0) real, then for \(z\in \mathbb {D},\)

$$ g(z)=\int \left( \frac{{\mathrm{e}}^{i\theta }+z}{\mathrm{e}^{i\theta }-z} \right) \mathrm{Re}(g(\mathrm{e}^{i\theta }))\frac{d\theta }{2\pi } $$

(see [42, p. 27]). This representation leads to the result (see (ii) in §5 of [42]) that for Lebesgue a.e. \(\theta ,\)

$$ \lim _{r\uparrow 1} W(r{\mathrm{e}^{i\theta }})\equiv W({\mathrm{e}^{i\theta }}) $$

exists and if \(d\mu =w(\theta )\frac{d\theta }{2\pi }+d\mu _s\) with \(d\mu _s\) singular, then

$$\begin{aligned} w(\theta )={\mathrm{Re}}W({\mathrm{e}^{i\theta }}), \end{aligned}$$
(36)

where

$$ W(z)= \int \left( \frac{{\mathrm{e}}^{i\theta }+z}{{\mathrm{e}}^{i\theta }-z} \right) d\mu (\theta ). $$

Our strategy for smooth estimation is the fact that for \(d\mu _s=0\) we have

$$\begin{aligned} f(\theta )=\frac{1}{2\pi }\lim _{r\uparrow 1} \mathrm{Re}~ W(r\mathrm{e}^{i\theta }), \end{aligned}$$
(37)

where now W(z) is defined as

$$ W(z)= \int \left( \frac{{\mathrm{e}}^{i\theta }+z}{{\mathrm{e}}^{i\theta }-z} \right) f(\theta )d\theta . $$

We define the estimator of \(f(\theta )\) motivated by considering an estimator of W(z),  the identity (36) and (37), i.e.

$$\begin{aligned} \hat{f}_r( \theta )=\frac{1}{2\pi }\mathrm{Re}~ W_n(r{\mathrm{e}}^{i\theta }) \end{aligned}$$
(38)

where

$$\begin{aligned} W_n(r{\mathrm{e}^{i\theta }})=\frac{1}{n}\sum _{j=1}^{n}\left( \frac{\mathrm{e}^{i\theta _j}+r{\mathrm{e}}^{i\theta }}{\mathrm{e}^{i\theta _j}-r{\mathrm{e}}^{i\theta }}\right) , \end{aligned}$$
(39)

and r has to be chosen appropriately. Recognize that (39) has the representation

$$ W_n(r{\mathrm{e}^{i\theta }})=\frac{1}{n}\sum _{j=1}^{n}~C(z,\omega _j), $$

where \(\omega _j={\mathrm{e}^{i\theta _j}},\) then using (35), we have

$$ \mathrm{Re}~W_n(r{\mathrm{e}^{i\theta }})=\frac{1}{n}\sum _{j=1}^{n}~P_r(\theta ,\theta _j), $$

and therefore (38) becomes

$$\begin{aligned} \hat{f}_r( \theta )= & {} \frac{1}{(2\pi )n}\sum _{j=1}^{n}~P_r(\theta ,\theta _j)\nonumber \\= & {} \frac{1}{n}\sum _{j=1}^{n}~f_{WC}(\theta ;\theta _j,r),\nonumber \end{aligned}$$

that is of the same form as in (9).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaubey, Y.P. (2022). On Nonparametric Density Estimation for Circular Data: An Overview. In: SenGupta, A., Arnold, B.C. (eds) Directional Statistics for Innovative Applications. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1044-9_19

Download citation

Publish with us

Policies and ethics

Navigation