ZnO Nanocomposites in Dye Degradation

  • Chapter
  • First Online:
Advanced Oxidation Processes in Dye-Containing Wastewater

Abstract

Substances like dyes having substantial colouring capacity are used in textiles which releases the effluents into natural streams by evading waste water treatment. Pollution caused by such non-biodegradable dyes like making the water unfit for human activities, harming aquatic life, causing diseases in humans etc. has become the major concern. Advanced Oxidative Processes (AOPs) by photocatalysis are being employed to remove these dyes and bring a considerable reduction in the contamination. Various semiconductor nanoparticles are widely used for photocatalysed degradation of dyes, out of which ZnO nanoparticle is one of the effective catalysts for this purpose. ZnO is considered above all other metal oxides due to its stability, low cost, high photosensitivity and optical properties. ZnO is combined with metal, metal oxides etc. in order to overcome the recombination of generated charge carriers and increase its photocatalytic and sonocatalytic efficiency. ZnO is produced by several methods like hydrothermal synthesis, solvothermal synthesis, one step flaming process etc. Characterization and confirmation of the synthesized nanoparticles are carried out by techniques such as X-ray diffraction (XRD), UV–Visible analysis, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Raman Spectroscopy, Brunauer-Emmer-Teller (BET) technique, Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersal X-ray analysis (EDX), Fourier-Transform Infrared (FTIR) spectroscopy Analysis, Energy Dispersal X-Ray spectroscopy (EDS) etc. Photocatalytic and sonocatalytic dye degradation depends on pH, size of the ZnO nanocomposite and calcination process. In this review different methods of ZnO synthesis, nanocomposite synthesis of ZnO with metals, characterization of the ZnO nanoparticles and dye degradation processes have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. Adhikari S, Sarkar D, Madras G (2015) Highly efficient WO3–ZnO mixed oxides for photocatalysis. RSC Adv 5(16):11895–11904. https://doi.org/10.1039/c4ra13210f

    Article  CAS  Google Scholar 

  2. Anandan S, Wu JJ (2014) Ultrasound assisted synthesis of TiO2–WO3 heterostructures for the catalytic degradation of Tergitol (NP-9) in water. Ultrason Sonochem 21(4):1284–1288. https://doi.org/10.1016/j.ultsonch.2014.01.014

    Article  CAS  Google Scholar 

  3. Anju SG, Yesodharan S, Yesodharan EP (2012) Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem Eng J 189–190:84–93. https://doi.org/10.1016/j.cej.2012.02.032

    Article  CAS  Google Scholar 

  4. Bagheri AR, Ghaedi M, Asfaram A, Jannesar R, Goudarzi A (2017) Design and construction of nanoscale material for ultrasonic assisted adsorption of dyes: application of derivative spectrophotometry and experimental design methodology. Ultrason Sonochem 35:112–123. https://doi.org/10.1016/j.ultsonch.2016.09.008

    Article  CAS  Google Scholar 

  5. Bustos-Torres KA, Vazquez-Rodriguez S, la Cruz AM de, Sepulveda-Guzman S, Benavides R, Lopez-Gonzalez R, Torres-Martínez LM (2017) Influence of the morphology of ZnO nanomaterials on photooxidation of polypropylene/ZnO composites. Mater Sci Semicond Process 68(May):217–225. https://doi.org/10.1016/j.mssp.2017.06.023

  6. Carraway ER, Hoffman AJ, Hoffmann MR (1994) Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ Sci Technol 28(5):786–793. https://doi.org/10.1021/es00054a007

    Article  CAS  Google Scholar 

  7. Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112(3):269–278. https://doi.org/10.1016/j.jhazmat.2004.05.013

    Article  CAS  Google Scholar 

  8. Daneshvar N, Aber S, Seyed Dorraji MS, Khataee AR, Rasoulifard MH (2007) Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep Purif Technol 58(1):91–98. https://doi.org/10.1016/j.seppur.2007.07.016

    Article  CAS  Google Scholar 

  9. Dzsaber S, Negyedi M, Bernáth B, Gyüre B, Fehér T, Kramberger C, Pichler T, Simon F (2015) A Fourier transform Raman spectrometer with visible laser excitation. J Raman Spectrosc 46(3):327–332. https://doi.org/10.1002/jrs.4641

    Article  CAS  Google Scholar 

  10. Ebrahimi R, Maleki A, Zandsalimi Y, Ghanbari R, Shahmoradi B, Rezaee R, Safari M, Joo SW, Daraei H, Harikaranahalli Puttaiah S, Giahi O (2019) Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution. J Ind Eng Chem 73:297–305. https://doi.org/10.1016/j.jiec.2019.01.041

    Article  CAS  Google Scholar 

  11. Hameed A, Montini T, Gombac V, Fornasiero P (2009) Photocatalytic decolourization of dyes on NiO–ZnO nano-composites. Photochem Photobiol Sci 8(5):677–682. https://doi.org/10.1039/b817396f

    Article  CAS  Google Scholar 

  12. Havrdova M, Polakova K, Skopalik J, Vujtek M, Mokdad A, Homolkova M, Tucek J, Nebesarova J, Zboril R (2014) Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells. Micron 67:149–154. https://doi.org/10.1016/j.micron.2014.08.001

    Article  CAS  Google Scholar 

  13. Hollerith C, Wernicke D, Bühler M, Feilitzsch FV, Huber M, Höhne J, Hertrich T, Jochum J, Phelan K, Stark M, Simmnacher B, Weiland W, Westphal W (2004) Energy dispersive X-ray spectroscopy with microcalorimeters. Nucl Instrum Methods Phys Res Sect A 520(1–3):606–609. https://doi.org/10.1016/j.nima.2003.11.327

    Article  CAS  Google Scholar 

  14. Hossaini H, Moussavi G, Farrokhi M (2017) Oxidation of diazinon in cns-ZnO/LED photocatalytic process: catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by-products. Sep Purif Technol 174:320–330. https://doi.org/10.1016/j.seppur.2016.11.005

    Article  CAS  Google Scholar 

  15. Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A 130(2–3):163–170. https://doi.org/10.1016/S1010-6030(99)00205-1

    Article  CAS  Google Scholar 

  16. Hunge YM, Mahadik MA, Moholkar AV, Bhosale CH (2017) Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrason Sonochem 35:233–242. https://doi.org/10.1016/j.ultsonch.2016.09.024

    Article  CAS  Google Scholar 

  17. Hunge YM, Yadav AA, Mathe VL (2018) Ultrasound assisted synthesis of WO3–ZnO nanocomposites for brilliant blue dye degradation. Ultrason Sonochem 45(January):116–122. https://doi.org/10.1016/j.ultsonch.2018.02.052

    Article  CAS  Google Scholar 

  18. Hunge YM, Yadav AA, Mohite BM, Mathe VL, Bhosale CH (2018) Photoelectrocatalytic degradation of sugarcane factory wastewater using WO3/ZnO thin films. J Mater Sci Mater Electron 29(5):3808–3816. https://doi.org/10.1007/s10854-017-8316-1

    Article  CAS  Google Scholar 

  19. Jadhav P, Shinde S, Suryawanshi SS, Teli SB, Patil PS, Ramteke AA, Hiremath NG, Prasad NR (2020) Green AgNPs decorated ZnO nanocomposites for dye degradation and antimicrobial applications. Eng Sci 12:79–94. https://doi.org/10.30919/es8d1138

  20. Kabir R, Saifullah MAK, Ahmed AZ, Masum SM, Molla MAI (2020) Synthesis of n-doped zno nanocomposites for sunlight photocatalytic degradation of textile dye pollutants. J Compos Sci 4(2). https://doi.org/10.3390/jcs4020049

  21. Kanade KG, Kale BB, Baeg JO, Lee SM, Lee CW, Moon SJ, Chang H (2007) Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Mater Chem Phys 102(1):98–104. https://doi.org/10.1016/j.matchemphys.2006.11.012

    Article  CAS  Google Scholar 

  22. Kavitha MK, Pillai SC, Gopinath P, John H (2015) Hydrothermal synthesis of ZnO decorated reduced graphene oxide: understanding the mechanism of photocatalysis. J Environ Chem Eng 3(2):1194–1199. https://doi.org/10.1016/j.jece.2015.04.013

    Article  CAS  Google Scholar 

  23. Khalid NR, Hammad A, Tahir MB, Rafique M, Iqbal T, Nabi G, Hussain MK (2019) Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram Int 45(17):21430–21435. https://doi.org/10.1016/j.ceramint.2019.07.132

    Article  CAS  Google Scholar 

  24. Khataee A, Karimi A, Arefi-Oskoui S, Darvishi Cheshmeh Soltani R, Hanifehpour Y, Soltani B, Joo SW (2015) Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of acid red 17. Ultrason Sonochem 22:371–381. https://doi.org/10.1016/j.ultsonch.2014.05.023

  25. Kuriakose S, Avasthi DK, Mohapatra S (2015) Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method. Beilstein J Nanotechnol 6(1):928–937. https://doi.org/10.3762/bjnano.6.96

    Article  CAS  Google Scholar 

  26. Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2013) Investigation on visible-light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in the presence of MoO3/ZnO nanorod composites. J Mol Catal A Chem 370:123–131. https://doi.org/10.1016/j.molcata.2013.01.005

    Article  CAS  Google Scholar 

  27. Li B, Wang Y (2010) Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite. Superlattices Microstruct 47(5):615–623. https://doi.org/10.1016/j.spmi.2010.02.005

    Article  CAS  Google Scholar 

  28. Litter MI (2005) Introduction to photochemical advanced oxidation processes for water treatment. In: Environmental photochemistry part II, vol 2, Issue September, pp 325–366. https://doi.org/10.1007/b138188

  29. Lucas MS, Peres JA (2006) Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm 71(3):236–244. https://doi.org/10.1016/j.dyepig.2005.07.007

    Article  CAS  Google Scholar 

  30. Ma H, Cheng X, Ma C, Dong X, Zhang X, Xue M, Zhang X, Fu Y (2013) Synthesis, characterization, and photocatalytic activity of N-doped ZnO/ZnS composites. Int J Photoenergy 2013. https://doi.org/10.1155/2013/625024

  31. Moroni M, Borrini D, Calamai L, Dei L (2005) Ceramic nanomaterials from aqueous and 1,2-ethanediol supersaturated solutions at high temperature. J Colloid Interface Sci 286(2):543–550. https://doi.org/10.1016/j.jcis.2005.01.097

    Article  CAS  Google Scholar 

  32. Muñoz-Fernandez L, Sierra-Fernandez A, Milošević O, Rabanal ME (2016) Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. Adv Powder Technol 27(3):983–993. https://doi.org/10.1016/j.apt.2016.03.021

    Article  CAS  Google Scholar 

  33. Pal B, Sharon M (2002) Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process. Mater Chem Phys 76(1):82–87. https://doi.org/10.1016/S0254-0584(01)00514-4

    Article  CAS  Google Scholar 

  34. Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra SP (2020) Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 563:370–380. https://doi.org/10.1016/j.jcis.2019.12.079

    Article  CAS  Google Scholar 

  35. Pascariu P, Tudose IV, Suchea M, Koudoumas E, Fifere N, Airinei A (2018) Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl Surf Sci 448:481–488. https://doi.org/10.1016/j.apsusc.2018.04.124

    Article  CAS  Google Scholar 

  36. Pawinrat P, Mekasuwandumrong O, Panpranot J (2009) Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal Commun 10(10):1380–1385. https://doi.org/10.1016/j.catcom.2009.03.002

    Article  CAS  Google Scholar 

  37. Prabakaran E, Pillay K (2019) Synthesis of N-doped ZnO nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light. RSC Adv 9(13):7509–7535. https://doi.org/10.1039/C8RA09962F

    Article  CAS  Google Scholar 

  38. Prencipe I, Dellasega D, Zani A, Rizzo D, Passoni M (2015) Energy dispersive X-ray spectroscopy for nanostructured thin film density evaluation. Sci Technol Adv Mater 16(2). https://doi.org/10.1088/1468-6996/16/2/025007

  39. Rahmani M, Kaykhaii M, Sasani M (2018) Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples. Spectrochim Acta Part A Mol Biomol Spectrosc 188:164–169. https://doi.org/10.1016/j.saa.2017.06.070

    Article  CAS  Google Scholar 

  40. Reddy IN, Reddy CV, Shim J, Akkinepally B, Cho M, Yoo K, Kim D (2020) Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation. Catal Today 340:277–285. https://doi.org/10.1016/j.cattod.2018.07.030

    Article  CAS  Google Scholar 

  41. Saini J, Garg VK, Gupta RK, Kataria N (2017) Removal of Orange G and Rhodamine B dyes from aqueous system using hydrothermally synthesized zinc oxide loaded activated carbon (ZnO-AC). J Environ Chem Eng 5(1):884–892. https://doi.org/10.1016/j.jece.2017.01.012

  42. Saleh SM (2019) ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye. Spectrochim Acta Part A Mol Biomol Spectrosc 211:141–147. https://doi.org/10.1016/j.saa.2018.11.065

  43. Sing KSW (1989) The use of gas adsorption for the characterization of porous solids. Colloids Surf 38(1):113–124. https://doi.org/10.1016/0166-6622(89)80148-9

  44. Singh K, Singh J, Rawat M (2019) Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl Sci 1(6). https://doi.org/10.1007/s42452-019-0610-5

  45. Štastná M, Trávníček M, Šlais K (2005) New azo dyes as colored isoelectric point markers for isoelectric focusing in acidic pH region. Electrophoresis 26(1):53–59. https://doi.org/10.1002/elps.200406088

  46. Sudrajat H, Babel S (2017) A novel visible light active N-doped ZnO for photocatalytic degradation of dyes. J Water Process Eng 16:309–318. https://doi.org/10.1016/j.jwpe.2016.11.006

  47. Tanaka K, Padermpole K, Hisanaga T (2000) Photocatalytic degradation of commercial azo dyes. Water Res 34(1):327–333. https://doi.org/10.1016/S0043-1354(99)00093-7

  48. Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31(9):4157–4170. https://doi.org/10.1016/0045-6535(95)80015-D

  49. Turan R, Perovic DD, Houghton DC (1996) Map** electrically active dopant profiles by field-emission scanning electron microscopy. Appl Phys Lett 69(11):1593–1595. https://doi.org/10.1063/1.117041

  50. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156(1–3):194–200. https://doi.org/10.1016/j.jhazmat.2007.12.033

  51. Velavan S, Amargeetha A (2018) X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from erythrina indica flowers. Nanosci Technol Open Access 5(1):1–5. https://doi.org/10.15226/2374-8141/5/1/00152

  52. Wang J, Jiang Z, Zhang Z, **e Y, Wang X, **ng Z, Xu R, Zhang X (2008) Sonocatalytic degradation of acid red B and Rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation. Ultrason Sonochem 15(5):768–774. https://doi.org/10.1016/j.ultsonch.2008.02.002

    Article  CAS  Google Scholar 

  53. **e J, Zhou Z, Lian Y, Hao Y, Liu X, Li M, Wei Y (2014) Simple preparation of WO3–ZnO composites with UV-Vis photocatalytic activity and energy storage ability. Ceram Int 40(8 Part A):12519–12524. https://doi.org/10.1016/j.ceramint.2014.04.106

  54. Yang TCK, Wang SF, Tsai SHY, Lin SY (2001) Intrinsic photocatalytic oxidation of the dye adsorbed on TiO2 photocatalysts by diffuse reflectance infrared Fourier transform spectroscopy. Appl Catal B 30(3–4):293–301. https://doi.org/10.1016/S0926-3373(00)00241-1

    Article  CAS  Google Scholar 

  55. Youssef Z, Colombeau L, Yesmurzayeva N, Baros F, Vanderesse R, Hamieh T, Toufaily J, Frochot C, Roques-Carmes T (2018) Dye-sensitized nanoparticles for heterogeneous photocatalysis: cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes Pigments (Elsevier Ltd.) 159:49–71. https://doi.org/10.1016/j.dyepig.2018.06.002

  56. Yu C, Yang K, Shu Q, Yu JC, Cao F, Li X (2011) Preparation of WO3/ZnO composite photocatalyst and its photocatalytic performance. Cuihua Xuebao/Chin J Catal 32(4):555–565. https://doi.org/10.1016/s1872-2067(10)60212-4

    Article  CAS  Google Scholar 

  57. Zbair M, Anfar Z, Ait Ahsaine H, El Alem N, Ezahri M (2018) Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: operational factors, mechanism and performance optimization using central composite design and surface modeling. J Environ Manag 206:383–397. https://doi.org/10.1016/j.jenvman.2017.10.058

    Article  CAS  Google Scholar 

  58. Zhang L, Qi H, Yan Z, Gu Y, Sun W, Zewde AA (2017) Sonophotocatalytic inactivation of E. coli using ZnO nanofluids and its mechanism. Ultrason Sonochem 34:232–238. https://doi.org/10.1016/j.ultsonch.2016.05.045

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugumari Vallinayagam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manohar, M.V., Paladhi, A.G., Jacob, S., Vallinayagam, S. (2022). ZnO Nanocomposites in Dye Degradation. In: Muthu, S.S., Khadir, A. (eds) Advanced Oxidation Processes in Dye-Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0882-8_12

Download citation

Publish with us

Policies and ethics

Navigation