Food Contaminants

  • Chapter
  • First Online:
Nutritional Toxicology
  • 614 Accesses

Abstract

Nowadays, with food safety incidents occurring repeatedly in many countries, consumers and organizations are increasingly concerned about the quality and safety of foodstuffs. The presence of food contaminants in humans has become subject of intense research for human exposure and health risk assessment. The release of an alarming number of toxic polluting agents such as volatile organic compounds, dyes, heavy metals, pharmaceuticals, pesticides, industrial wastes, radiation contamination, and personal care products due to natural or anthropogenic activities poses direct adverse effects on human health and living entities. Institutions like the World Health Organization and various nations have categorized food contamination into several groups: chemical, biological, physical, and cross-contamination. All these make them a threat to human health and the environment across the globe. Here, we describe various concepts related to food contaminants, such as their sources, risk characterization, formation mechanism, and health effect. And a thorough understanding of these concepts can help researchers gain better insight into food contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sagratini G, Mañes J, Giardiná D, et al. Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography–mass spectrometry. J Chromatogr A. 2007;1147:135–43.

    Article  CAS  PubMed  Google Scholar 

  2. Food and Agriculture Organization of the United Nations. Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed; 2002, Rome, First Edition.

    Google Scholar 

  3. Jakubowski M, Trzcinka-Ochocka M. Biological monitoring of exposure: trends and key developments. J Occup Health. 2005;47:22–48.

    Article  CAS  PubMed  Google Scholar 

  4. Barr DB, Needham LL. Analytical methods for biological monitoring of exposure to pesticides: a review. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;778:5–29.

    Article  CAS  PubMed  Google Scholar 

  5. Aitio A. Guidance values for the biomonitoring of occupational exposure. State of the art. Med Lav. 2006;97:324–31.

    CAS  PubMed  Google Scholar 

  6. Maroni M, Colosio C, Ferioli A, et al. Introduction. Toxicology. 2000;143:5–118.

    Article  CAS  Google Scholar 

  7. Angerer J, Aylward LL, Hays SM, et al. Human biomonitoring assessment values: approaches and data requirements. Int J Hyg Environ Health. 2011;214:348–60.

    Article  CAS  PubMed  Google Scholar 

  8. Göen T, Schaller K-H, Drexler H. Biological reference values for chemical compounds in the work area (BARs): an approach for evaluating biomonitoring data. Int Arch Occup Environ Health. 2011;85(5):571–8.

    Article  PubMed  CAS  Google Scholar 

  9. Casida JE. Pyrethrum flowers and pyrethroid insecticides. Environ Health Perspect. 1980;34:189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verschlyle RD, Aldridge WN. Structure-activity relationship of some pyrethroids in rats. Arch Toxicol. 1980;45:325–9.

    Article  Google Scholar 

  11. Clark JM, Symington SB. Advances in the mode of action of pyrethroids. Top Curr Chem. 2012;314:49–72.

    Article  CAS  PubMed  Google Scholar 

  12. Casida JE, Quistad GB. Golden age of insecticide research: past, present, or future? Annu Rev Entomol. 1998;43:1–16.

    Article  CAS  PubMed  Google Scholar 

  13. California Department of Pesticide Regulation (CDPR). Pesticide use status. Government of California. http://www.cdpr.ca.gov/docs/pur/purmain.htm. Accessed June 2007.

  14. DEFRA, Department for Environment, Food, and Rural Affairs, Pesticide usage statistics. Central Science Laboratory and Scottish Agricultural Science Agency, UK. 2006. http://pusstats.csl.gov.uk/index.cfm.

  15. Soderlund DM. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol. 2012;86(2):165–81.

    Article  CAS  PubMed  Google Scholar 

  16. Anand SS, Kim KB, Padilla S, et al. Ontogeny of hepatic and plasma metabolism of deltamethrin in vitro: role in age-dependent acute neurotoxicity. Drug Metab Dispos. 2006;34(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  17. Anand SS, Bruckner JV, Haines WT, et al. Characterization of deltamethrin metabolism by rat plasma and liver microsomes. Toxicol Appl Pharmacol. 2006;212(2):156–66.

    Article  CAS  PubMed  Google Scholar 

  18. Kim KB, Anand SS, Kim HJ, et al. Age, dose, and time-dependency of plasma and tissue distribution of deltamethrin in immature rats. Toxicol Sci. 2010;115(2):354–68.

    Article  CAS  PubMed  Google Scholar 

  19. Elliot M, Janes NF. Synthetic pyrethroids—a new class of insecticide. Chem Soc Rev. 1978;7:473–505.

    Article  Google Scholar 

  20. Soderlund DM, Clark JM, Sheets LP. Mechanisms of pyrethroid neurotoxicity implications for cumulative risk assessment. Toxicology. 2002;171:3–59.

    Article  CAS  PubMed  Google Scholar 

  21. Glomot R. Toxicity of deltamethrin to higher vertebrates, deltamethrin (monograph). Paris: Roussel-Uclaf Research Centre; 1982. p. 109–36. Chapter 4

    Google Scholar 

  22. Gray AJ, Soderlund DM. Mammalian toxicology of pyrethroids. In: Hutson DH, Roberts TR, editors. Insecticides. New York: Wiley; 1985. p. 193–248.

    Google Scholar 

  23. CDC, Center for Disease Control and Prevention. Toxicological profile for pyrethrins and pyrethroids. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, Sept 2003.

    Google Scholar 

  24. Crofton KM, Kehn LS, Gilbert ME. Vehicle and route dependent effects of a pyrethroid insecticide, deltamethrin, on motor function in the rat. Neurotoxicol Teratol. 1995;17(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  25. Pham HC, Navarro-Delmasure C, Pham HC, et al. Toxicological studies of deltamethrin. Int J Tissue React. 1984;6(2):127–33.

    CAS  PubMed  Google Scholar 

  26. Wolansky MJ, McDaniel KL, Moser VC, et al. Influence of dosing volume on the neurotoxicity of bifenthrin. Neurotoxicol Teratol. 2007;29(3):377–84.

    Article  CAS  PubMed  Google Scholar 

  27. Williamson EG, Long SF, Kallman MJ, et al. A comparative analysis of the acute toxicity of technical-grade pyrethroid insecticides and their commercial formulations. Ecotoxicol Environ Saf. 1989;8(1):27–34.

    Article  Google Scholar 

  28. Shafer TJ, Meyer DA, Crofton KM. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect. 2005;113:123–36.

    Article  CAS  PubMed  Google Scholar 

  29. Narahashi T. Neuroreceptors and ion channels as the basis for drug action: past, present, and future. J Pharmacol Exp Ther. 2000;294(1):1–26.

    CAS  PubMed  Google Scholar 

  30. Crofton KM, Howard JL, Moser VC. Inter-laboratory comparisons of motor activity experiments: implications for neurotoxicological risk assessments. Neurotoxicol Teratol. 1991;13(6):599–609.

    Article  CAS  PubMed  Google Scholar 

  31. Metker L, Angerhofer RA, Pope CR, Swentzel KC. Toxicological evaluation of 3-(phenoxyphenyl) methyl (±)-cis, trans-3-(2,2-dichlor-oethenyl)-2,2-dimethylciclopropanecarboxylate (permethrin). Sudy #51-0831-78. Department of the Army, US Environmental Hygiene Agency, Aberdeen Proving Ground, Maryland, December 1 1977.

    Google Scholar 

  32. Ray DE. Function in neurotoxicity: index of effect and also determinant of vulnerability. Clin Exp Pharmacol Physiol. 1997;24(11):857–60.

    Article  CAS  PubMed  Google Scholar 

  33. Weinert D, Waterhouse J. Diurnally changing effects of locomotor activity in body temperature on laboratory mice. Physiol Behav. 1998;63(5):837–43.

    Article  CAS  PubMed  Google Scholar 

  34. Gordon CJ. Effect of cage bedding on temperature regulation and metabolism of group-housed female mice. Comp Med. 2004;54(1):50–5.

    Google Scholar 

  35. Gordon CJ. Temperature and toxicology: an integrative, comparative, and environmental approach. Boca Raton: CRC Press; 2005.

    Book  Google Scholar 

  36. Soderlund DM. Toxicology and mode of action of pyrethroid insecticides. In: Krieger R, editor. Hay’s handbook of pesticide toxicology. 3rd ed. Amsterdam: Elsevier; 2010.

    Google Scholar 

  37. Dorman DC, Buck WB, Trammel HL, et al. Fenvalerate/N,N-diethyl-m-toluamide (Deet) toxicosis in two cats. J Am Vet Med Assoc. 1990;196(1):100–2.

    CAS  PubMed  Google Scholar 

  38. Dorman DC, Beasley VR. Neurotoxicology of pyrethrin and pyrethroid insecticides. Vet Hum Toxicol. 1991;33(3):238–43.

    CAS  PubMed  Google Scholar 

  39. Lawrence LJ, Casida JE. Pyrethroid toxicology: mouse intracerebral structure-toxicity relationships. Pest Biochem Physiol. 1982;18:9–14.

    Article  CAS  Google Scholar 

  40. Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metals toxicity and the environment. EXS. 2012;101:133–64.

    PubMed  PubMed Central  Google Scholar 

  41. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 2010;8:199–216.

    Article  CAS  Google Scholar 

  42. Usharani B, Vasudevan N. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation. Arch Environ Occup Health. 2016;71(2):102–10.

    Article  CAS  PubMed  Google Scholar 

  43. Shiowatana J, McLaren RG, Chanmekha N, et al. Fractionation of arsenic in soil by a continuous flow sequential extraction method. J Environ Qual. 2001;30(6):1940–9.

    Article  CAS  PubMed  Google Scholar 

  44. Ross SM. Toxic metals in soil–plant systems. Chichester: Wiley; 1994. p. 469.

    Google Scholar 

  45. Silveira MLA, Alleoni LRF, Guilherme LRG. Biosolids and heavy metals in soils. Sci Agric. 2003;60(4):64–111.

    Article  Google Scholar 

  46. Verkleji JAS. The effects of heavy metals stress on higher plants and their use as bio monitors. In: Markert B, editor. Plant as bioindicators: indicators of heavy metals in the terrestrial environment. New York: VCH; 1993. p. 415–24.

    Google Scholar 

  47. D’Amore JJ, Al-Abed SR, Scheckel KG, et al. Methods for speciation of metals in soils: a review. J Environ Qual. 2005;34(5):1707–45.

    Article  PubMed  CAS  Google Scholar 

  48. Lacerda LD. Global mercury emissions from gold and silver mining. Water Air Soil Pollut. 1997;97:209–21.

    Article  CAS  Google Scholar 

  49. Yanqun Z, Yuan L, Jianjun C, et al. Hyper accumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int. 2005;31:755–62.

    Article  PubMed  CAS  Google Scholar 

  50. Bradford WI. Urban storm water pollutant loadings a statistical summary through. JWPCF. 1997;49:610–3.

    Google Scholar 

  51. Wuana RA, Okieimen FE. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Scholar Res Netw ISRN Ecol. 2011;2011:402647.

    Google Scholar 

  52. Lasat MM. Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res. 2000;2:1–25.

    Google Scholar 

  53. Campbell PGC. Cadmium—a priority pollutant. Environ Chem. 2006;3(6):387–8.

    Article  CAS  Google Scholar 

  54. Flora SJS, Flora G, Saxena G. Environmental occurrence, health effects and management of lead poisoning. In: Casas JS, Sordo J, editors. Lead. Amsterdam: Elsevier B.V.; 2006.

    Google Scholar 

  55. WHO. Preventing disease through healthy environments: exposure to lead: a major public health concern. Geneva: World Health Organization; 2010.

    Google Scholar 

  56. WHO. Lead exposure. In: Comparative quantification of health risks. Geneva: World Health Organization; 2004. p. 1495–542.

    Google Scholar 

  57. WHO Food Additives Series 64. 73rd meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva: World Health Organisation; 2011.

    Google Scholar 

  58. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN. Heavy metal pollution and human biotoxic effects. Int J Phys Sci. 2007;2:112–8.

    Google Scholar 

  59. Baldwin DR, Marshall WJ. Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem. 1999;36(3):267–300.

    Article  CAS  PubMed  Google Scholar 

  60. Chunhabundit R. Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol Res. 2016;32(1):65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. WHO. Exposure to cadmium: a major public health concern. In: Preventing disease through healthy environments. Geneva: World Health Organization; 2010.

    Google Scholar 

  62. WHO. Cadmium. In: Guidelines for drinking-water quality, 3rd edition incorporating 1st and 2nd addenda. Vol. 1. Recommendations. Geneva: World Health Organization; 2008. p. 317–9.

    Google Scholar 

  63. Bosch AC, O’Neill B, Sigge GO, et al. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric. 2016;96:32–48.

    Article  CAS  PubMed  Google Scholar 

  64. Kima K-H, Kabir E, Jahan SA. A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater. 2016;306:376–85.

    Article  CAS  Google Scholar 

  65. Pirrone N, Cinnirella S, Feng X, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys. 2010;1010:5951–64.

    Article  CAS  Google Scholar 

  66. Storelli MM, Marcotrigiano GO. Fish for human consumption: risk of contamination by mercury. Food Addit Contam. 2000;17:1007–11.

    Article  CAS  PubMed  Google Scholar 

  67. Castro-Gonzalez MI, Mendez-Armenta M. Heavy metals: implications associated to fish consumption. Environ Toxicol Pharmacol. 2008;26:263–71.

    Article  CAS  PubMed  Google Scholar 

  68. WHO. Exposure to mercury: a major public health concern. In: Preventing disease through healthy environments. Geneva: World Health Organization; 2010.

    Google Scholar 

  69. Diez S. Human health effects of methylmercury exposure. Rev Environ Contam Toxicol. 2009;198:111–32.

    CAS  PubMed  Google Scholar 

  70. Matta G, Gjyli L. Mercury, lead and arsenic: impact on environment and human health. J Chem Pharm Sci. 2016;9(2):718–25.

    CAS  Google Scholar 

  71. Clarkson T. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36:609–62.

    Article  CAS  PubMed  Google Scholar 

  72. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med. 2003;349:1731–7.

    Article  CAS  PubMed  Google Scholar 

  73. Ely JTA. Mercury induced Alzheimer’s disease: accelerating incidence? Bull Environ Contam Toxicol. 2001;67:800–6.

    Article  CAS  PubMed  Google Scholar 

  74. Haley BE. Mercury toxicity: genetic susceptibility and synergistic effects. Med Veritas. 2005;2(2):535–42.

    Article  Google Scholar 

  75. WHO. Exposure to arsenic: a major public health concern. In: Preventing disease through healthy environments. Geneva: World Health Organization; 2010.

    Google Scholar 

  76. Vieira C, Morais S, Ramos S, et al. Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: intra- and inter-specific variability and human health risks for consumption. Food Chem Toxicol. 2011;49:923–32.

    Article  CAS  PubMed  Google Scholar 

  77. Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of certain contaminants in food (Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Food Additives Series, No 959; 2012.

    Google Scholar 

  78. Mudhoo A, Sharma SK, Garg VK, et al. Arsenic: an overview of applications, health, and environmental concerns and removal processes. Crit Rev Environ Sci Technol. 2011;41:435–519.

    Article  CAS  Google Scholar 

  79. Tchounwou PB, Patlolla AK, Centeno JA. Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol. 2003;31(6):575–88.

    CAS  PubMed  Google Scholar 

  80. Col M, Col C, Soran A, et al. Arsenic-related Bowen’s disease, palmar keratosis, and skin cancer. Environ Health Perspect. 1999;107:687–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. IPCS. Arsine: human health aspects. Geneva, World Health Organization, International Programme on Chemical Safety (Concise international chemical assessment document no. 47); 2002.

    Google Scholar 

  82. Zelinkova Z, Wenzl T. The occurrence of 16 EPA PAHs in food—a review. Polycycl Aromat Compd. 2015;35(2–4):248–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A. Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the north central part of India. J Hazard Mater. 2010;177:190–8.

    Article  CAS  PubMed  Google Scholar 

  84. Masih J, Singhvi R, Kumar K, Jain VK, Taneja A. Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of northern India. Aerosol Air Qual Res. 2012;12:515–25.

    Article  CAS  Google Scholar 

  85. Mumtaz M, George J. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). In: Public Health Service, US Department of Health and Human Services, editors. Atlanta: Agency for Toxic Substances and Disease Registry; 1995, p. 487.

    Google Scholar 

  86. Culp SJ, Gaylor DW, Sheldon WG, Goldstein LS, Beland FA. A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis. 1998;19:117–24.

    Article  CAS  PubMed  Google Scholar 

  87. Huang M, Prossing TMP. Contaminants: polycyclic aromatic hydrocarbons (PAHs). Amsterdam: Elsevier BV; 2014.

    Google Scholar 

  88. Larsen JC, Poulsen E. Mutagens and carcinogens in heat-processed food. In: Miller K, editor. Toxicological aspects of food. London: Elsevier; 1987. p. 205–52.

    Google Scholar 

  89. Adrian J, Billaud C, Rabache M. Part of technological processes in the occurrence of benzo(a)pyrene in foods. World Rev Nutr Diet. 1984;44:155–84.

    Article  CAS  PubMed  Google Scholar 

  90. Deshpande SS. Handbook of food toxicology. New York: Marcel Dekker; 2002.

    Book  Google Scholar 

  91. Yannai S. Toxic factors induced by processing. In: Liener IE, editor. Toxic constituents of plant food stuffs. New York: Academic Press; 1980. p. 371–427.

    Google Scholar 

  92. Kim K-H, Jahan SA, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80.

    Article  CAS  PubMed  Google Scholar 

  93. USDHHS. Polycyclic aromatic hydrocarbons. In: Sixth annual report on carcinogens-summary. Washington, DC: U.S. Dept. Health Human Services; 1991.

    Google Scholar 

  94. IARC. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol. 32: polynuclear aromatic compounds, part 1: chemical, environmental and experimental data. Lyon: International Agency for Research on Cancer; 1983.

    Google Scholar 

  95. USDHHS. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Washington, DC: U.S. Dept. Health Human Services; 1993.

    Google Scholar 

  96. ACGIH (American conference of governmental industrial hygienists). Polycyclic aromatic hydrocarbons (PAHs) biologic exposure indices (BEI). In: American conference of governmental industrial hygienists, Cincinnati, 2005.

    Google Scholar 

  97. Unwin J, Cocker J, Scobbie E, Chambers H. An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg. 2006;50(4):395–403.

    CAS  PubMed  Google Scholar 

  98. IPCS (International Programme on Chemical Safety). Polycyclic aromatic hydrocarbons, selected non-heterocyclic. 2010. http://www.inchem.org/documents/ehc/ehc/ehc202.htm.

  99. Wells PG, McCallum GP, Lam KC, Henderson JT, Ondovcik SL. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits. Birth Defects Res C Embryo Today. 2010;90(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  100. Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett. 2007;5(4):169–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Armstrong BG, Hutchinson E, Fletcher T. Cancer risk following exposure to polycyclic aromatic hydrocarbons (PAHs): a meta-analysis. Rep No 068. Sudbury, UK: this health and safety executive. 2002. http://www.hse.gov.uk/research/rrhtm/rr068.htm.

  102. Kuo CY, Hsu YW, Lee HS. Study of human exposure to particulate PAHs using personal air samplers. Arch Environ Contam Toxicol. 2003;44:454–9.

    Article  CAS  PubMed  Google Scholar 

  103. Institute of Medicine (US) Committee on the implications of dioxin in the food supply. Dioxins and dioxin-like compounds in the food supply: strategies to decrease exposure. Washington, DC: The National Academies Press; 2003.

    Google Scholar 

  104. Fernández-González R, Yebra-Pimentel I, Martínez-Carballo E, et al. A critical review about human exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) through foods. Crit Rev Food Sci Nutr. 2015;55(11):1590–617.

    Article  PubMed  CAS  Google Scholar 

  105. Shibamoto T, Bjeldanes LF. Introduction to food toxicology. 2nd ed. Maryland Heights: Elsevier; 2009.

    Google Scholar 

  106. Rose M. Environmental contaminants: dioxins, furans, and dioxin-like polychlorinated biphenyls. Amsterdam: Elsevier BV; 2014.

    Google Scholar 

  107. Schuhmacher M, Nadal M, Domingo JL. Levels of PCDD/Fs, PCBs, and PCNs in soils and vegetation in an area with chemical and petrochemical industries. Environ Sci Technol. 2004;38(7):1960–9.

    Article  CAS  PubMed  Google Scholar 

  108. Hülster A, Muller JF, Marschner H. Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the Cucumber family (Cucurbitaceae). Environ Sci Technol. 1994;28:1110–5.

    Article  Google Scholar 

  109. Tsutsumi T, Iida T, Hori T, et al. Recent survey and effects of cooking processes on levels of PCDDs, PCDFs and CoPCBs in leafy vegetables in Japan. Chemosphere. 2002;46:1443–9.

    Article  CAS  PubMed  Google Scholar 

  110. Fernandes A, Mortimer D, Rose M, Gem M. Dioxins(PCDD6 Fs) and PCBs in offal: occurrence and dietary exposure. Chemosphere. 2010;81(4):536–40.

    Article  CAS  PubMed  Google Scholar 

  111. EPA (U.S. Environmental Protection Agency). Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Draft final report. Washington, DC: EPA; 2000.

    Google Scholar 

  112. Hardell L, Van Bavel B, Lindstrom G, et al. Higher concentrations of specific polychlorinated biphenyl congeners in adipose tissue from nonHodgkin’s lymphoma patients compared with controls without a malignant disease. Int J Oncol. 1996;9:603–8.

    Article  CAS  PubMed  Google Scholar 

  113. Brown DP. Mortality of workers exposed to polychlorinated biphenyls—an update. Arch Environ Health. 1987;42:333–9.

    Article  CAS  PubMed  Google Scholar 

  114. Loomis D, Browning SR, Schenck AP, Gregory E, Savitz DA. Cancer mortality among electric utility workers exposed to polychlorinated biphenyls. Occup Environ Med. 1997;54(10):720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tironi A, Pesatori A, Consonni D, Zocchetti C, Bertazzi PA. Mortality among women workers exposed to PCBs. Epidemiol Prev. 1996;20:200–2.

    CAS  PubMed  Google Scholar 

  116. Sinks T, Steele G, Smith AB, Watkins K, Shults RA. Mortality among workers exposed to polychlorinated biphenyls. Am J Epidemiol. 1992;136:389–98.

    Article  CAS  PubMed  Google Scholar 

  117. Gustavsson P, Hogstedt C. A cohort study of Swedish capacitor manufacturing workers exposed to polychlorinated biphenyls (PCBs). Am J Ind Med. 1997;32:234–9.

    Article  CAS  PubMed  Google Scholar 

  118. Moysich KB, Menezes RJ, Baker JA, Falkner KL. Environmental exposure to polychlorinated biphenyls and breast cancer risk. Rev Environ Health. 2002;17(4):263–77.

    Article  CAS  PubMed  Google Scholar 

  119. Rogan WJ, Gladen BC, McKinney JD, et al. Neonatal effects of transplacental exposure to PCBs and DDE. J Pediatr. 1986;109:335–41.

    Article  CAS  PubMed  Google Scholar 

  120. Jacobson JL, Jacobson SW. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med. 1996;335:783–9.

    Article  CAS  PubMed  Google Scholar 

  121. Kusuda M. A study on the sexual functions of women suffering from rice-bran oil poisoning. Sanka to Fu**ka. 1971;38:1062–72.

    Google Scholar 

  122. Gerhard I, Daniel B, Link S, et al. Chlorinated hydrocarbons in women with repeated miscarriages. Environ Health Perspect. 1998;106:675–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mocarelli P, Gerthoux PM, Ferrari E, et al. Paternal concentrations of dioxin and sex ratio of offspring. Lancet. 2000;355:1858–63.

    Article  CAS  PubMed  Google Scholar 

  124. Koopman-Esseboom C, Morse DC, Weisglas-Kuperus N, et al. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res. 1994;36:468–73.

    Article  CAS  PubMed  Google Scholar 

  125. Weisglas-Kuperus N, Vreugdenhil HJ, Mulder PG. Immunological effects of environmental exposure to polychlorinated biphenyls and dioxins in Dutch school children. Toxicol Lett. 2004;149:281–5.

    Article  CAS  PubMed  Google Scholar 

  126. Longnecker MP, Klebanoff MA, Brock JW, et al. Maternal levels of polychlorinated biphenyls in relation to preterm and small-for gestational-age birth. Epidemiology. 2005;16(5):641–7.

    Article  PubMed  Google Scholar 

  127. European Union. Commission regulation (EU) no 1259/2011. Official Journal of European Union, L320/23 1259/2011; 2011.

    Google Scholar 

  128. World Health Organization (WHO). Fact sheet no 25: dioxins and their effect on human health. http://www.who.int/mediacentre/factsheets/fs225/en/

  129. http://ec.europa.eu/food/food/chemicalsafety/contaminants/dioxins_en.htm European Commission, DG SANCO.

  130. Li**sky W, Shubick P. Benzo(a)pyrene and other polynuclear hydrocarbons in charcoal-broiled meat. Science. 1964;145:53.

    Article  CAS  PubMed  Google Scholar 

  131. Oz F, Kaya M. Heterocyclic aromatic amines in meat. J Food Process Preserv. 2011;35:739.

    Article  CAS  Google Scholar 

  132. Shabbir MA, Raza A, Anjum FM, Khan MR, Suleria HAR. Effect of thermal treatment on meat proteins with special reference to heterocyclic aromatic amines (HAAs). Crit Rev Food Sci Nutr. 2015;55:82.

    Article  CAS  PubMed  Google Scholar 

  133. Widmark EMP. Nature. 1939;143:972.

    Article  Google Scholar 

  134. Sugimura T, Nagao M, Kawachi T, Honda M, Yahagi T, Seino Y, Sato S, Matsukara N, Shirai A, Sawamura M, Matsumoto H. Mutagens-carcinogens in food, with special reference to highly mutagenic pyrolytic products in broiled foods. In: Hiatt HH, Watson JD, Winsten JA, editors. Origins of human cancer. New York: Cold Spring Harbour Laboratory; 1977. p. 1561–77.

    Google Scholar 

  135. Knize MG, Sinha R, Rothman N, Brown ED, Salmon CP, Levander OA, Cunningham PL, Felton JS. Food Chem Toxicol. 1995;33:545.

    Article  CAS  PubMed  Google Scholar 

  136. Alaejos MS, Afonso AM. Compr Rev Food Sci Food Saf. 2011;10:52.

    Article  CAS  Google Scholar 

  137. Sinha R, Gustafson DR, Kulldorff M, Wen WQ, Cerhan JR, Zheng W. J Natl Cancer Inst. 2000;92:1352.

    Article  CAS  PubMed  Google Scholar 

  138. Sinha R, Kulldorff M, Chow WH, Denobile J, Rothman N. Cancer Epidemiol Biomark Prev. 2001;10:559.

    CAS  Google Scholar 

  139. Augustsson K, Skog K, Jägerstad M, Dickman PW, Steineck G. Lancet. 1999;353:703.

    Article  CAS  PubMed  Google Scholar 

  140. Gunter MJ, Probst-Hensch NM, Cortessis VK, Kulldorff M, Haile RW, Sinha R. Carcinogenesis. 2005;26:637.

    Article  CAS  PubMed  Google Scholar 

  141. Muhammad AS, Ali R, Faqir MA, Moazzam RK, Hafiz ARS. Crit Rev Food Sci Nutr. 2017;55:82.

    Google Scholar 

  142. **ap S, Mohd-Mokhtar M, Farhadian A, Hasnol N, Jaafar S, Hajeb P. Meat Sci. 2013;94:202.

    Article  CAS  PubMed  Google Scholar 

  143. Viegas O, Novo P, Pinto E, Pinho O, Ferreira I. Food Chem Toxicol. 2012;50:2128.

    Article  CAS  PubMed  Google Scholar 

  144. Liao G, Wang G, Xu X, Zhou G. Meat Sci. 2010;85:149.

    Article  CAS  PubMed  Google Scholar 

  145. Pedreschi F, Mariotti MS, Granby K. J Sci Food Agric. 2014;94:9.

    Article  CAS  PubMed  Google Scholar 

  146. Sumner SC, Fennell TR, Moore TA, Chanas B, Gonzalez F. Chem Res Toxicol. 1999;12:1110.

    Article  CAS  PubMed  Google Scholar 

  147. Friedman MA, Dulak LH, Stedham MA. Fundam Appl Toxicol. 1995;27:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Riboldi BP, Vinhas ÁM, Moreira JD. Food Chem. 2014;157:310.

    Article  CAS  PubMed  Google Scholar 

  149. Kahkeshani N, Saeidnia S, Abdollahi M. J Food Sci Technol. 2015;52:3169.

    CAS  PubMed  Google Scholar 

  150. Wenzl T, De La Calle MB, Anklam E. Food Additiv Contam. 2003;20:885.

    Article  CAS  Google Scholar 

  151. Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP, Villagran MDJ. Agric Food Chem. 2003;51:4782.

    Article  CAS  Google Scholar 

  152. Vikström AC, Wilson KM, Paulsson B. Food Chem Toxicol. 2010;48:820.

    Article  PubMed  CAS  Google Scholar 

  153. Arvanitoyannis IS, Dionisopoulou N. Crit Rev Food Sci Nutr. 2014;54:708.

    Article  CAS  PubMed  Google Scholar 

  154. Wenzl T, De La Calle MB, Anklam E. Food Addit Contam. 2003;20:885.

    Article  CAS  PubMed  Google Scholar 

  155. Zelinková Z, Svejkovská B, Velíšek J, Doležal M. Food Addit Contam. 2006;23:1290.

    Article  PubMed  CAS  Google Scholar 

  156. Divinova V, Svejkovská B, Dolezal M, Velíšek J, Czech J. Food Sci. 2004;22:182.

    CAS  Google Scholar 

  157. Bakhiya N, Abraham K, Gürtler R, Appel KE, Lampen A. Mol Nutr Food Res. 2011;55:509.

    Article  CAS  PubMed  Google Scholar 

  158. Hamlet C, Sadd P, Crews C, Velíšek J, Baxter D. Food Addit Contam. 2002;19:619.

    Article  CAS  PubMed  Google Scholar 

  159. Hamlet CG, Asuncion L, Velíšek J, Doležal M, Zelinková Z, Crews C. Eur J Lipid Sci Technol. 2011;113:279.

    Article  CAS  Google Scholar 

  160. Razak RAA, Kuntom A, Siew WL, Ibrahim NA, Ramli MR, Hussein R, Nesaretnam K. Food Control. 2012;25:355–60.

    Article  CAS  Google Scholar 

  161. Lampen A, Scholz G, Weisshaar R, Wenzl T. Food Addit Contam Part A. 2013;30:11.

    Article  CAS  Google Scholar 

  162. Herrmann SS, Duedahl-Olesen L, Granby K. Food Control. 2015;48:163.

    Article  CAS  Google Scholar 

  163. Tricker AR, Kubacki S. J Food Addit Contam. 1992;9:39.

    Article  CAS  Google Scholar 

  164. Li**sky W. Mutat Res/Genet Toxicol Environ Mutag. 1999;443:129.

    Article  CAS  Google Scholar 

  165. Stuff JE, Goh ET, Barrera SL, Bondy ML, Forman MR. J Food Compost Anal. 2009;1:22.

    Google Scholar 

  166. Herrmann SS, Granby K, Duedahl-Olesen L. Food Chem. 2015;174:516.

    Article  CAS  PubMed  Google Scholar 

  167. Stuff JE, Goh ET, Barrera SL, Bondy ML, Forman MR. J Food Compos Anal. 2009;22:S42.

    Article  CAS  Google Scholar 

  168. Herrmann SS, Duedahl-Olesen L, Christensen T, Olesen PT, Granby K. Food Chem Toxicol. 2015;80:137.

    Article  CAS  PubMed  Google Scholar 

  169. Todd ECD. Foodborne diseases: overview of emerging food technology, Encyclopedia of food safety. Amsterdam: Elsevier BV; 2014.

    Google Scholar 

  170. Deshpande SS. Handbook of food toxicology. Marcel Dekker, Inc.; 2002.

    Book  Google Scholar 

  171. Venugopal V, Doke SN, Thomas P, et al. Radiation processing to improve the quality of fishery products. Crit Rev Food Sci Nutr. 1999;39(5):391–440.

    Article  CAS  PubMed  Google Scholar 

  172. Cope S, Frewer LJ, Renn O, Dreyer M. Potential methods and approaches to assess social impacts associated with food safety issues. Food Control. 2010;21(12):1629–37.

    Article  Google Scholar 

  173. Fischhoff B, Slovic P, Lichtenstein S, Read S, Combs B. How safe is safe enough? A psychometric study of attitudes towards technological risks and benefits. Policy Sci. 1978;9:127–52.

    Article  Google Scholar 

  174. Frewer L, Lassen J, Kettlitz B, Scholderer J, Beekman V, Berdal KG. Societal aspects of genetically modified foods. Food Chem Toxicol. 2004;42(7):1181–93.

    Article  CAS  PubMed  Google Scholar 

  175. Hackwood S. The irradiation processing of foods. In: Thorne S, editor. Food irradiation. London: Elsevier Applied Science; 1991. p. 7.

    Google Scholar 

  176. World Health Organization. Safety and nutritional adequacy of irradiated food, WHO report, Geneva, Switzerland; 1994.

    Google Scholar 

  177. Stanley, et al. Food irradiation. Food Nutr Toxicol. 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Shuai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shuai, Y., Sui, H., Tao, G., Huo, Q., Li, C., Shao, N. (2022). Food Contaminants. In: Zhang, L. (eds) Nutritional Toxicology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0872-9_5

Download citation

Publish with us

Policies and ethics

Navigation