Phytochemicals and Health

  • Chapter
  • First Online:
Nutritional Toxicology
  • 613 Accesses

Abstract

Phytochemicals refer to a large group of non-nutritious but bioactive compounds derived from plant foods including fruits, vegetables, and grains. Due to the considerable diversity in their chemical structures, phytochemicals can be divided into phenolic compounds, carotenoids, terpenoids, organosulfur compounds, glucosinolates, saponins, phytoestrogens, phytic acid, phytosterols, etc. Phytochemicals are not only important for plant growth, but also helpful for plants to survive under various environmental stresses and resist infections of viruses, bacteria, yeasts, and fungi. At the same time, the beneficial roles of phytochemicals in improving human health, such as protecting against coronary heart disease, diabetes, cancers, hypertension, inflammation, and other chronic diseases, have gained increasing interest in recent years. In this chapter, we summarized the definition, classification, physicochemical property, pharmacokinetics, biological effects, and health functions of phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leitzmann C. Characteristics and health benefits of phytochemicals. Forsch Komplementmed. 2016;23:69–74.

    PubMed  Google Scholar 

  2. Aharoni A, Galili G. Metabolic engineering of the plant primary-secondary metabolism interface. Curr Opin Biotechnol. 2011;22:239–44.

    Article  CAS  PubMed  Google Scholar 

  3. Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, et al. Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci. 2012;4:10–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Tennant DR, Davidson J, Day AJ. Phytonutrient intakes in relation to European fruit and vegetable consumption patterns observed in different food surveys. Br J Nutr. 2014;112:1214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Phan MAT, Paterson J, Bucknall M, Arcot J. Interactions between phytochemicals from fruits and vegetables: effects on bioactivities and bioavailability. Crit Rev Food Sci Nutr. 2018;58:1310–29.

    Article  CAS  PubMed  Google Scholar 

  6. Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, et al. Melatonin: protection against age-related cardiac pathology. Ageing Res Rev. 2016;35:336–49.

    Article  PubMed  CAS  Google Scholar 

  7. Nunes S, Danesi F, Del Rio D, Silva P. Resveratrol and inflammatory bowel disease: the evidence so far. Nutr Res Rev. 2018;31:85–97.

    Article  CAS  PubMed  Google Scholar 

  8. Afshari K, Haddadi NS, Haj-Mirzaian A, Farzaei MH, Rohani MM, et al. Natural flavonoids for the prevention of colon cancer: a comprehensive review of preclinical and clinical studies. J Cell Physiol. 2019;234(12):21519–46.

    Article  CAS  PubMed  Google Scholar 

  9. Tan BL, Norhaizan ME. Carotenoids: how effective are they to prevent age-related diseases? Molecules. 2019;24:1801.

    Article  CAS  PubMed Central  Google Scholar 

  10. Grabowska M, Wawrzyniak D, Rolle K, Chomczynski P, Oziewicz S, et al. Let food be your medicine: nutraceutical properties of lycopene. Food Funct. 2019;10(6):3090–102.

    Article  CAS  PubMed  Google Scholar 

  11. Eisenhauer B, Natoli S, Liew G, Flood VM. Lutein and zeaxanthin-food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients. 2017;9:120.

    Article  PubMed Central  CAS  Google Scholar 

  12. Yazaki K, Arimura GI, Ohnishi T. ‘Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles. Plant Cell Physiol. 2017;58:1615–21.

    Article  CAS  PubMed  Google Scholar 

  13. Melino S, Sabelli R, Paci M. Allyl sulfur compounds and cellular detoxification system: effects and perspectives in cancer therapy. Amino Acids. 2011;41:103–12.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao YZ, Zhang YY, Han H, Fan RP, Hu Y, et al. Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med. 2018;16:732–48.

    CAS  PubMed  Google Scholar 

  15. Han Q, Qian Y, Wang X, Zhang Q, Cui J, et al. Cytotoxic oleanane triterpenoid saponins from Albizia julibrissin. Fitoterapia. 2017;121:183–93.

    Article  CAS  PubMed  Google Scholar 

  16. Rienks J, Barbaresko J, Nothlings U. Association of isoflavone biomarkers with risk of chronic disease and mortality: a systematic review and meta-analysis of observational studies. Nutr Rev. 2017;75:616–41.

    Article  PubMed  Google Scholar 

  17. Durazzo A, Lucarini M, Camilli E, Marconi S, Gabrielli P, et al. Dietary lignans: definition, description and research trends in databases development. Molecules. 2018;23:3251.

    Article  PubMed Central  CAS  Google Scholar 

  18. Silva EO, Bracarense AP. Phytic acid: from antinutritional to multiple protection factor of organic systems. J Food Sci. 2016;81:R1357–62.

    Article  CAS  PubMed  Google Scholar 

  19. Bin Sayeed MS, Karim SMR, Sharmin T, Morshed MM. Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: a plant-derived orphan phytosterol. Medicines (Basel). 2016;3:29.

    Article  CAS  Google Scholar 

  20. Wang S, Ye K, Shu T, Tang X, Wang XJ, et al. Enhancement of galloylation efficacy of stigmasterol and beta-sitosterol followed by evaluation of cholesterol-reducing activity. J Agric Food Chem. 2019;67:3179–87.

    Article  CAS  PubMed  Google Scholar 

  21. Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sanchez E, et al. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res. 2017;196:44–68.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal. 2013;2013:162750.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seleem D, Pardi V, Murata RM. Review of flavonoids: a diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch Oral Biol. 2017;76:76–83.

    Article  CAS  PubMed  Google Scholar 

  24. Heleno SA, Martins A, Queiroz MJ, Ferreira IC. Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem. 2015;173:501–13.

    Article  CAS  PubMed  Google Scholar 

  25. Stevenson DE, Wibisono R, Jensen DJ, Stanley RA, Cooney JM. Direct acylation of flavonoid glycosides with phenolic acids catalysed by Candida antarctica lipase B (Novozym 435®). Enzym Microb Technol. 2006;39:1236–41.

    Article  CAS  Google Scholar 

  26. Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 2003;51:2866–87.

    Article  CAS  PubMed  Google Scholar 

  27. Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res. 2013;52:539–61.

    Article  CAS  PubMed  Google Scholar 

  28. Oz M, Lozon Y, Sultan A, Yang KH, Galadari S. Effects of monoterpenes on ion channels of excitable cells. Pharmacol Ther. 2015;152:83–97.

    Article  CAS  PubMed  Google Scholar 

  29. Clarke S. Essential chemistry for aromatherapy. Edinburgh: Churchill Livingstone; 2008. p. 41–77.

    Book  Google Scholar 

  30. Ariga T, Seki T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors. 2006;26:93–103.

    Article  CAS  PubMed  Google Scholar 

  31. Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2002;59:237.

    Article  CAS  Google Scholar 

  32. Dong J, Liang W, Wang T, Sui J, Wang J, et al. Saponins regulate intestinal inflammation in colon cancer and IBD. Pharmacol Res. 2019;144:66–72.

    Article  CAS  PubMed  Google Scholar 

  33. Thaung Zaw JJ, Howe PRC, Wong RHX. Does phytoestrogen supplementation improve cognition in humans? A systematic review. Ann N Y Acad Sci. 2017;1403:150–63.

    Article  PubMed  CAS  Google Scholar 

  34. Dersjant-Li Y, Awati A, Schulze H, Partridge G. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric. 2015;95:878–96.

    Article  CAS  PubMed  Google Scholar 

  35. Changhao S, Wenhua L, Guowei H. Nutrition and Food Hygiene. Bei**g: People’s Health Publishing House; 2017. p. 135–6.

    Google Scholar 

  36. Graf E, Empson KL, Eaton JW. Phytic acid. A natural antioxidant. J Biol Chem. 1987;262:11647–50.

    Article  CAS  PubMed  Google Scholar 

  37. Miras-Moreno B, Sabater-Jara AB, Pedreno MA, Almagro L. Bioactivity of phytosterols and their production in plant in vitro cultures. J Agric Food Chem. 2016;64:7049–58.

    Article  CAS  PubMed  Google Scholar 

  38. Lampe JW, Chang JL. Interindividual differences in phytochemical metabolism and disposition. Semin Cancer Biol. 2007;17:347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koistinen VM, Hanhineva K. Microbial and endogenous metabolic conversions of rye phytochemicals. Mol Nutr Food Res. 2016;61(7):1600627.

    Article  CAS  Google Scholar 

  40. Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, et al. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev. 2015;47:175–90.

    Article  CAS  PubMed  Google Scholar 

  41. Gonzales GB. In vitro bioavailability and cellular bioactivity studies of flavonoids and flavonoid-rich plant extracts: questions, considerations and future perspectives. Proc Nutr Soc. 2017;76:175–81.

    Article  CAS  PubMed  Google Scholar 

  42. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13:572–84.

    Article  CAS  PubMed  Google Scholar 

  43. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014;15:48–61.

    Article  CAS  PubMed  Google Scholar 

  44. Feng X, Li Y, Brobbey Oppong M, Qiu F. Insights into the intestinal bacterial metabolism of flavonoids and the bioactivities of their microbe-derived ring cleavage metabolites. Drug Metab Rev. 2018;50:343–56.

    Article  CAS  PubMed  Google Scholar 

  45. Hollman PC, Katan MB. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother. 1997;51:305–10.

    Article  CAS  PubMed  Google Scholar 

  46. Williamson G. Common features in the pathways of absorption and metabolism of flavonoids. In: Meskin MS, et al., editors. Phytochemicals: mechanisms of action. Boca Raton, FL: CRC Press; 2004. p. 21–33.

    Google Scholar 

  47. Nemeth K, Piskula MK. Food content, processing, absorption and metabolism of onion flavonoids. Crit Rev Food Sci Nutr. 2007;47:397–409.

    Article  CAS  PubMed  Google Scholar 

  48. Walle T. Absorption and metabolism of flavonoids. Free Radic Biol Med. 2004;36:829–37.

    Article  CAS  PubMed  Google Scholar 

  49. Thilakarathna SH, Rupasinghe HPV. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients. 2013;5:3367–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007;121:2357–63.

    Article  CAS  PubMed  Google Scholar 

  51. Bungau S, Abdel-Daim MM, Tit DM, Ghanem E, Sato S, et al. Health benefits of polyphenols and carotenoids in age-related eye diseases. Oxidative Med Cell Longev. 2019;2019:9783429.

    Article  CAS  Google Scholar 

  52. Santangelo C, Vari R, Scazzocchio B, Di Benedetto R, Filesi C, et al. Polyphenols, intracellular signalling and inflammation. Ann Ist Super Sanita. 2007;43:394–405.

    CAS  PubMed  Google Scholar 

  53. Lee YM, Yoon Y, Yoon H, Park HM, Song S, et al. Dietary anthocyanins against obesity and inflammation. Nutrients. 2017;9:1089.

    Article  PubMed Central  CAS  Google Scholar 

  54. Chan MM-Y, Fong D, Ho C-T, Huang H-I. Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, a natural product from green tea. Biochem Pharmacol. 1997;54:1281–6.

    Article  CAS  PubMed  Google Scholar 

  55. Paquay JBG, Haenen G, Stender G, Wiseman SA, Tijburg LBM, et al. Protection against nitric oxide toxicity by tea. J Agric Food Chem. 2000;48:5768–72.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Ji S, Zang W, Wang N, Cao J, et al. Identification of phenolic compounds from a unique citrus species, finger lime (Citrus australasica) and their inhibition of LPS-induced NO-releasing in BV-2cell line. Food Chem Toxicol. 2019;129:54–63.

    Article  CAS  PubMed  Google Scholar 

  57. Crouvezier S, Powell B, Keir D, Yaqoob P. The effects of phenolic components of tea on the production of pro- and anti-inflammatory cytokines by human leukocytes in vitro. Cytokine. 2001;13:280–6.

    Article  CAS  PubMed  Google Scholar 

  58. Wang D, **a M, Yan X, Li D, Wang L, et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res. 2012;111:967–81.

    Article  CAS  PubMed  Google Scholar 

  59. Wongwichai T, Teeyakasem P, Pruksakorn D, Kongtawelert P, Pothacharoen P. Anthocyanins and metabolites from purple rice inhibit IL-1beta-induced matrix metalloproteinases expression in human articular chondrocytes through the NF-kappaB and ERK/MAPK pathway. Biomed Pharmacother. 2019;112:108610.

    Article  CAS  PubMed  Google Scholar 

  60. Ormazabal P, Scazzocchio B, Vari R, Santangelo C, D’Archivio M, et al. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: possible role for PTP1B. Int J Obes. 2018;42:2012–21.

    Article  CAS  Google Scholar 

  61. Zhang Z, Li G, Szeto SSW, Chong CM, Quan Q, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med. 2015;84:331–43.

    Article  CAS  PubMed  Google Scholar 

  62. Adedara IA, Fasina OB, Ayeni MF, Ajayi OM, Farombi EO. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem Toxicol. 2019;125:170–81.

    Article  CAS  PubMed  Google Scholar 

  63. Huang FC, Kuo HC, Huang YH, Yu HR, Li SC, et al. Anti-inflammatory effect of resveratrol in human coronary arterial endothelial cells via induction of autophagy: implication for the treatment of Kawasaki disease. BMC Pharmacol Toxicol. 2017;18:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Yu H, Pan W, Huang H, Chen J, Sun B, et al. Screening analysis of sirtuins family expression on anti-inflammation of resveratrol in endothelial cells. Med Sci Monit. 2019;25:4137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu JM, Hsieh TC, Yang CJ, Olson SC. Resveratrol and its metabolites modulate cytokine-mediated induction of eotaxin-1 in human pulmonary artery endothelial cells. Ann N Y Acad Sci. 2013;1290:30–6.

    Article  CAS  PubMed  Google Scholar 

  66. Militaru C, Donoiu I, Craciun A, Scorei ID, Bulearca AM, et al. Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: effects on lipid profiles, inflammation markers, and quality of life. Nutrition. 2013;29:178–83.

    Article  CAS  PubMed  Google Scholar 

  67. van der Made SM, Plat J, Mensink RP. Trans-resveratrol supplementation and endothelial function during the fasting and postprandial phase: a randomized placebo-controlled trial in overweight and slightly obese participants. Nutrients. 2017;9:596.

    Article  PubMed Central  CAS  Google Scholar 

  68. Khodabandehloo H, Seyyedebrahimi S, Esfahani EN, Razi F, Meshkani R. Resveratrol supplementation decreases blood glucose without changing the circulating CD14(+) CD16(+) monocytes and inflammatory cytokines in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Nutr Res. 2018;54:40–51.

    Article  CAS  PubMed  Google Scholar 

  69. Vors C, Couillard C, Paradis ME, Gigleux I, Marin J, et al. Supplementation with resveratrol and curcumin does not affect the inflammatory response to a high-fat meal in older adults with abdominal obesity: a randomized, placebo-controlled crossover. Trial J Nutr. 2018;148:379–88.

    Article  PubMed  Google Scholar 

  70. Biesalski HK. Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care. 2007;10:724–8.

    Article  CAS  PubMed  Google Scholar 

  71. Mohammadzadeh Honarvar N, Saedisomeolia A, Abdolahi M, Shayeganrad A, Taheri Sangsari G, et al. Molecular anti-inflammatory mechanisms of retinoids and carotenoids in Alzheimer’s disease: a review of current evidence. J Mol Neurosci. 2017;61:289–304.

    Article  CAS  PubMed  Google Scholar 

  72. Palozza P, Parrone N, Catalano A, Simone R. Tomato lycopene and inflammatory cascade: basic interactions and clinical implications. Curr Med Chem. 2010;17:2547–63.

    Article  CAS  PubMed  Google Scholar 

  73. Gallily R, Yekhtin Z, Hanus LO. The anti-inflammatory properties of Terpenoids from cannabis. Cannabis Cannabinoid Res. 2018;3:282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shi C, Li H, Yang Y, Hou L. Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives. Mediat Inflamm. 2015;2015:435713.

    Article  Google Scholar 

  75. Tran QTN, Wong WSF, Chai CLL. Labdane diterpenoids as potential anti-inflammatory agents. Pharmacol Res. 2017;124:43–63.

    Article  CAS  PubMed  Google Scholar 

  76. Sun Y, Gao LL, Tang MY, Feng BM, Pei YH, et al. Triterpenoids from Euphorbia maculata and their anti-inflammatory effects. Molecules. 2018;23:2112.

    Article  PubMed Central  CAS  Google Scholar 

  77. Chen W, Liang X, Syed AK, Jessup P, Church WR, et al. Inhibiting GPIb shedding preserves post-transfusion recovery and hemostatic function of platelets after prolonged storage. Arterioscler Thromb Vasc Biol. 2016;36:1821–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lei Y-P, Chen H-W, Sheen L-Y, Lii C-K. Diallyl disulfide and diallyl trisulfide suppress oxidized LDL-induced vascular cell adhesion molecule and E-selectin expression through protein kinase A- and B-dependent signaling pathways. J Nutr. 2008;138:996–1003.

    Article  CAS  PubMed  Google Scholar 

  79. Son E-W, Mo S-J, Rhee D-K, Pyo S. Inhibition of ICAM-1 expression by garlic component, allicin, in gamma-irradiated human vascular endothelial cells via downregulation of the JNK signaling pathway. Int Immunopharmacol. 2006;6:1788–95.

    Article  CAS  PubMed  Google Scholar 

  80. Keophiphath M, Priem F, Jacquemond-Collet I, Clement K, Lacasa D. 1,2-Vinyidithiin from garlic inhibits differentiation and inflammation of human Preadipocytes. J Nutr. 2009;139:2055–60.

    Article  CAS  PubMed  Google Scholar 

  81. Youn HS, Kim YS, Park ZY, Kim SY, Choi NY, et al. Sulforaphane suppresses oligomerization of TLR4 in a thiol-dependent manner. J Immunol. 2010;184:411–9.

    Article  CAS  PubMed  Google Scholar 

  82. Durham A, Jazrawi E, Rhodes JA, Williams C, Kilty I, et al. The anti-inflammatory effects of sulforaphane are not mediated by the Nrf2 pathway. Eur Respir J. 2014;44:P3332.

    Google Scholar 

  83. Zeng X, Liu X, Bao H, Zhang Y, Wang X, et al. [Effects of sulforaphane on Toll-like receptor 4/myeloid differentiation factor 88 pathway of monocyte-derived macrophages from patients with chronic obstructive pulmonary disease]. Zhonghua Jie He He Hu ** Za Zhi. 2014;37:250–4.

    Google Scholar 

  84. Kim SY, Jeong E, Joung SM, Lee JY. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress. Biochem Biophys Res Commun. 2012;419:466–71.

    Article  CAS  PubMed  Google Scholar 

  85. Yan T, Yu X, Sun X, Meng D, Jia JM. A new steroidal saponin, furotrilliumoside from Trillium tschonoskii inhibits lipopolysaccharide-induced inflammation in Raw264.7 cells by targeting PI3K/Akt, MARK and Nrf2/HO-1 pathways. Fitoterapia. 2016;115:37–45.

    Article  CAS  PubMed  Google Scholar 

  86. Fan R, Han Y, Han H, Chen Z, Yu B, et al. DT-13 ameliorates TNF-alpha-induced nitric oxide production in the endothelium in vivo and in vitro. Biochem Biophys Res Commun. 2018;495:1175–81.

    Article  CAS  PubMed  Google Scholar 

  87. Liu J, Tang J, Zuo Y, Yu Y, Luo P, et al. Stauntoside B inhibits macrophage activation by inhibiting NF-kappaB and ERK MAPK signalling. Pharmacol Res. 2016;111:303–15.

    Article  CAS  PubMed  Google Scholar 

  88. Lee SM. Anti-inflammatory effects of ginsenosides Rg5, Rz1, and Rk1: inhibition of TNF-alpha-induced NF-kappaB, COX-2, and iNOS transcriptional expression. Phytother Res. 2014;28:1893–6.

    Article  CAS  PubMed  Google Scholar 

  89. Taborskaya KI, Frolova MY, Kuleva NV. Comparative analysis of serotonin levels in rat platelets, serum and brain on the aging. Tsitologiia. 2016;58:115–9.

    CAS  PubMed  Google Scholar 

  90. Jung H-W, Seo U-K, Kim J-H, Leem K-H, Park Y-K. Flower extract of Panax notoginseng attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-kappa B signaling pathway in murine macrophages. J Ethnopharmacol. 2009;122:313–9.

    Article  PubMed  Google Scholar 

  91. Wang Y, Peng D, Huang W, Zhou X, Liu J, et al. Mechanism of altered TNF-alpha expression by macrophage and the modulatory effect of Panax notoginseng saponins in scald mice. Burns. 2006;32:846–52.

    Article  PubMed  Google Scholar 

  92. Metwaly AM, Lianlian Z, Luqi H, Deqiang D. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. Molecules. 2019;24:1856.

    Article  CAS  PubMed Central  Google Scholar 

  93. Alemany L, Barbera R, Alegria A, Laparra JM. Plant sterols from foods in inflammation and risk of cardiovascular disease: a real threat? Food Chem Toxicol. 2014;69:140–9.

    Article  CAS  PubMed  Google Scholar 

  94. Gabay O, Sanchez C, Salvat C, Chevy F, Breton M, et al. Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthr Cartil. 2010;18:106–16.

    Article  CAS  Google Scholar 

  95. Antwi AO, Obiri DD, Osafo N. Stigmasterol modulates allergic airway inflammation in guinea pig model of ovalbumin-induced asthma. Mediat Inflamm. 2017;2017:2953930.

    Article  CAS  Google Scholar 

  96. Yin Y, Liu X, Liu J, Cai E, Zhu H, et al. Beta-sitosterol and its derivatives repress lipopolysaccharide/d-galactosamine-induced acute hepatic injury by inhibiting the oxidation and inflammation in mice. Bioorg Med Chem Lett. 2018;28:1525–33.

    Article  CAS  PubMed  Google Scholar 

  97. Li X, Xu J, Tang X, Liu Y, Yu X, et al. Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo. Mol Med Rep. 2016;13:4007–13.

    Article  CAS  PubMed  Google Scholar 

  98. Chen M, Zhao Z, Yu S. Cytotoxicity and apoptotic effects of polyphenols from sugar beet molasses on colon carcinoma cells in vitro. Int J Mol Sci. 2016;17:993.

    Article  PubMed Central  CAS  Google Scholar 

  99. James MI, Iwuji C, Irving G, Karmokar A, Higgins JA, et al. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett. 2015;364:135–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khan AQ, Siveen KS, Prabhu KS, Kuttikrishnan S, Akhtar S, et al. Curcumin-mediated degradation of S-phase kinase protein 2 induces cytotoxic effects in human papillomavirus-positive and negative squamous carcinoma cells. Front Oncol. 2018;8:399.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Durko L, Malecka-Panas E. Lifestyle modifications and colorectal cancer. Curr Colorectal Cancer Rep. 2014;10:45–54.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Perna A, De Luca A, Adelfi L, Pasquale T, Varriale B, et al. Effects of different extracts of curcumin on TPC1 papillary thyroid cancer cell line. BMC Complement Altern Med. 2018;18:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Shin HJ, Hwang KA, Choi KC. Antitumor effect of various phytochemicals on diverse types of thyroid cancers. Nutrients. 2019;11:125.

    Article  CAS  PubMed Central  Google Scholar 

  104. Zhang L, Cheng X, Gao Y, Bao J, Guan H, et al. Induction of ROS-independent DNA damage by curcumin leads to G2/M cell cycle arrest and apoptosis in human papillary thyroid carcinoma BCPAP cells. Food Funct. 2016;7:315–25.

    Article  CAS  PubMed  Google Scholar 

  105. Yin MC, Lin CC, Wu HC, Tsao SM, Hsu CK. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: potential mechanisms of action. J Agric Food Chem. 2009;57:6468–73.

    Article  CAS  PubMed  Google Scholar 

  106. Tsao SM, Hsia TC, Yin MC. Protocatechuic acid inhibits lung cancer cells by modulating FAK, MAPK, and NF-kappaB pathways. Nutr Cancer. 2014;66:1331–41.

    Article  CAS  PubMed  Google Scholar 

  107. Lin HH, Chen JH, Chou FP, Wang CJ. Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-kappaB pathway and MMP-2 production by targeting RhoB activation. Br J Pharmacol. 2011;162:237–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, et al. Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr. 2018;58:1428–47.

    Article  PubMed  Google Scholar 

  109. De Amicis F, Chimento A, Montalto FI, Casaburi I, Sirianni R, et al. Steroid receptor signallings as targets for resveratrol actions in breast and prostate cancer. Int J Mol Sci. 2019;20:1087.

    Article  PubMed Central  CAS  Google Scholar 

  110. Elshaer M, Chen Y, Wang XJ, Tang X. Resveratrol: an overview of its anti-cancer mechanisms. Life Sci. 2018;207:340–9.

    Article  CAS  PubMed  Google Scholar 

  111. Carini F, David S, Tomasello G, Mazzola M, Damiani P, et al. Colorectal cancer: an update on the effects of lycopene on tumor progression and cell proliferation. J Biol Regul Homeost Agents. 2017;31:769–74.

    CAS  PubMed  Google Scholar 

  112. Nelson SM, Panagiotou OA, Anic GM, Mondul AM, Mannisto S, et al. Metabolomics analysis of serum 25-hydroxy-vitamin D in the alpha-tocopherol, beta-carotene cancer prevention (ATBC) study. Int J Epidemiol. 2016;45:1458–68.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yang T, Yang X, Wang X, Wang Y, Song Z. The role of tomato products and lycopene in the prevention of gastric cancer: a meta-analysis of epidemiologic studies. Med Hypotheses. 2013;80:383–8.

    Article  CAS  PubMed  Google Scholar 

  114. Bolhassani A. Cancer chemoprevention by natural carotenoids as an efficient strategy. Anti Cancer Agents Med Chem. 2015;15:1026–31.

    Article  CAS  Google Scholar 

  115. Satomi Y. Antitumor and cancer-preventative function of fucoxanthin: a marine carotenoid. Anticancer Res. 2017;37:1557–62.

    Article  CAS  PubMed  Google Scholar 

  116. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134:3479S–85S.

    Article  CAS  PubMed  Google Scholar 

  117. Abar L, Vieira AR, Aune D, Stevens C, Vingeliene S, et al. Blood concentrations of carotenoids and retinol and lung cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Cancer Med. 2016;5:2069–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, et al. Risk factors for lung cancer and for intervention effects in CARET, the beta-carotene and retinol efficacy trial. J Natl Cancer Inst. 1996;88:1550–9.

    Article  CAS  PubMed  Google Scholar 

  119. Ahmad Farooqi A, Fayyaz S, Silva AS, Sureda A, Nabavi SF, et al. Oleuropein and cancer chemoprevention: the link is hot. Molecules. 2017;22:705.

    Article  PubMed Central  CAS  Google Scholar 

  120. Jian B, Zhang H, Han C, Liu J. Anti-cancer activities of diterpenoids derived from Euphorbia fischeriana Steud. Molecules. 2018;23:387.

    Article  PubMed Central  CAS  Google Scholar 

  121. Su HG, Zhou QM, Guo L, Huang YJ, Peng C, et al. Lanostane triterpenoids from Ganoderma luteomarginatum and their cytotoxicity against four human cancer cell lines. Phytochemistry. 2018;156:89–95.

    Article  CAS  PubMed  Google Scholar 

  122. Pan JH, Abernathy B, Kim YJ, Lee JH, Kim JH, et al. Cruciferous vegetables and colorectal cancer prevention through microRNA regulation: a review. Crit Rev Food Sci Nutr. 2018;58:2026–38.

    Article  CAS  PubMed  Google Scholar 

  123. Costea T, Hudita A, Ciolac OA, Galateanu B, Ginghina O, et al. Chemoprevention of colorectal cancer by dietary compounds. Int J Mol Sci. 2018;19:3787.

    Article  PubMed Central  CAS  Google Scholar 

  124. Wang S, Li M, Wang X, Li X, Yin H, et al. Diallyl trisulfide attenuated n-hexane induced neurotoxicity in rats by modulating P450 enzymes. Chem Biol Interact. 2017;265:1–7.

    Article  CAS  PubMed  Google Scholar 

  125. Wu X, Zhou QH, Xu K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol Sin. 2009;30:501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. **e ZZ, Li MM, Deng PF, Wang S, Wang L, et al. Paris saponin-induced autophagy promotes breast cancer cell apoptosis via the Akt/mTOR signaling pathway. Chem Biol Interact. 2017;264:1–9.

    Article  CAS  PubMed  Google Scholar 

  127. Chen MF, Huang SJ, Huang CC, Liu PS, Lin KI, et al. Saikosaponin d induces cell death through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian hepatic stellate cells. BMC Cancer. 2016;16:532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kim BM, Kim DH, Park JH, Surh YJ, Na HK. Ginsenoside Rg3 inhibits constitutive activation of NF-kappaB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream targets. J Cancer Prev. 2014;19:23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chen XP, Qian LL, Jiang H, Chen JH. Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int J Clin Oncol. 2011;16:519–23.

    Article  CAS  PubMed  Google Scholar 

  130. Wang JH, Nao JF, Zhang M, He P. 20(s)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumour Biol. 2014;35:11985–94.

    Article  CAS  PubMed  Google Scholar 

  131. Bjorklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017;33:311–21.

    Article  PubMed  CAS  Google Scholar 

  132. Ma LY, Sun ZH, Zeng YW, Luo MC, Yang JZ. Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings. Int J Mol Sci. 2018;19:2785.

    Article  PubMed Central  CAS  Google Scholar 

  133. Loffredo L, Perri L, Nocella C, Violi F. Antioxidant and antiplatelet activity by polyphenol-rich nutrients: focus on extra virgin olive oil and cocoa. Br J Clin Pharmacol. 2017;83:96–102.

    Article  CAS  PubMed  Google Scholar 

  134. Wang H, Guo X, Hu X, Li T, Fu X, et al. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017;217:773–81.

    Article  CAS  PubMed  Google Scholar 

  135. Gammone MA, Pluchinotta FR, Bergante S, Tettamanti G, D’Orazio N. Prevention of cardiovascular diseases with carotenoids. Front Biosci (Schol Ed). 2017;9:165–71.

    Article  Google Scholar 

  136. Guerrero-Beltran CE, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012;64:503–8.

    Article  CAS  PubMed  Google Scholar 

  137. Spormann TM, Albert FW, Rath T, Dietrich H, Will F, et al. Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiol Biomark Prev. 2008;17:3372–80.

    Article  CAS  Google Scholar 

  138. Yin TF, Wang M, Qing Y, Lin YM, Wu D. Research progress on chemopreventive effects of phytochemicals on colorectal cancer and their mechanisms. World J Gastroenterol. 2016;22:7058–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Riso P, Visioli F, Gardana C, Grande S, Brusamolino A, et al. Effects of blood orange juice intake on antioxidant bioavailability and on different markers related to oxidative stress. J Agric Food Chem. 2005;53:941–7.

    Article  CAS  PubMed  Google Scholar 

  140. Krga I, Milenkovic D. Anthocyanins: from sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. J Agric Food Chem. 2019;67:1771–83.

    Article  CAS  PubMed  Google Scholar 

  141. Thompson K, Pederick W, Santhakumar AB. Anthocyanins in obesity-associated thrombogenesis: a review of the potential mechanism of action. Food Funct. 2016;7:2169–78.

    Article  CAS  PubMed  Google Scholar 

  142. Mazza GJ. Anthocyanins and heart health. Ann Ist Super Sanita. 2007;43:369–74.

    CAS  PubMed  Google Scholar 

  143. Reis JF, Monteiro VV, de Souza Gomes R, do Carmo MM, da Costa GV, et al. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J Transl Med. 2016;14:315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Yadav E, Singh D, Yadav P, Verma A. Attenuation of dermal wounds via downregulating oxidative stress and inflammatory markers by protocatechuic acid rich n-butanol fraction of Trianthema portulacastrum Linn. in wistar albino rats. Biomed Pharmacother. 2017;96:86–97.

    Article  CAS  PubMed  Google Scholar 

  145. Farombi EO, Adedara IA, Awoyemi OV, Njoku CR, Micah GO, et al. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct. 2016;7:913–21.

    Article  CAS  PubMed  Google Scholar 

  146. Preetha Rani MR, Anupama N, Sreelekshmi M, Raghu KG. Chlorogenic acid attenuates glucotoxicity in H9c2 cells via inhibition of glycation and PKC alpha upregulation and safeguarding innate antioxidant status. Biomed Pharmacother. 2018;100:467–77.

    Article  CAS  PubMed  Google Scholar 

  147. Zhang Y, Wang Y, Chen D, Yu B, Zheng P, et al. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food Funct. 2018;9:4968–78.

    Article  CAS  PubMed  Google Scholar 

  148. Zhou Y, Zhou L, Ruan Z, Mi S, Jiang M, et al. Chlorogenic acid ameliorates intestinal mitochondrial injury by increasing antioxidant effects and activity of respiratory complexes. Biosci Biotechnol Biochem. 2016;80:962–71.

    Article  CAS  PubMed  Google Scholar 

  149. Singh AK, Vinayak M. Resveratrol alleviates inflammatory hyperalgesia by modulation of reactive oxygen species (ROS), antioxidant enzymes and ERK activation. Inflamm Res. 2017;66:911–21.

    Article  CAS  PubMed  Google Scholar 

  150. Sadi G, Konat D. Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats. Pharm Biol. 2016;54:1156–63.

    CAS  PubMed  Google Scholar 

  151. **a N, Daiber A, Forstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol. 2017;174:1633–46.

    Article  CAS  PubMed  Google Scholar 

  152. Zou JG, Huang YZ, Chen Q, Wei EH, Hsieh TC, et al. Resveratrol inhibits copper ion-induced and azo compound-initiated oxidative modification of human low density lipoprotein. Biochem Mol Biol Int. 1999;47:1089–96.

    CAS  PubMed  Google Scholar 

  153. Pungcharoenkul K, Thongnopnua P. Effect of different curcuminoid supplement dosages on total in vivo antioxidant capacity and cholesterol levels of healthy human subjects. Phytother Res. 2011;25:1721–6.

    Article  CAS  PubMed  Google Scholar 

  154. Schex R, Lieb VM, Jimenez VM, Esquivel P, Schweiggert RM, et al. HPLC-DAD-APCI/ESI-MS(n) analysis of carotenoids and alpha-tocopherol in Costa Rican Acrocomia aculeata fruits of varying maturity stages. Food Res Int. 2018;105:645–53.

    Article  CAS  PubMed  Google Scholar 

  155. Gammone MA, Riccioni G, D’Orazio N. Marine carotenoids against oxidative stress: effects on human health. Mar Drugs. 2015;13:6226–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Young AJ, Lowe GM. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys. 2001;385:20–7.

    Article  CAS  PubMed  Google Scholar 

  157. Sherif IO. The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: role of Nrf2/HO-1 pathway. Int Immunopharmacol. 2018;61:29–36.

    Article  CAS  PubMed  Google Scholar 

  158. Mezza GN, Borgarello AV, Grosso NR, Fernandez H, Pramparo MC, et al. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem. 2018;242:9–15.

    Article  CAS  PubMed  Google Scholar 

  159. Dong S, Li B, Dai W, Wang D, Qin Y, et al. Sesqui- and diterpenoids from the radix of Curcuma aromatica. J Nat Prod. 2017;80:3093–102.

    Article  CAS  PubMed  Google Scholar 

  160. Yang HM, Yin ZQ, Zhao MG, Jiang CH, Zhang J, et al. Pentacyclic triterpenoids from Cyclocarya paliurus and their antioxidant activities in FFA-induced HepG2 steatosis cells. Phytochemistry. 2018;151:119–27.

    Article  CAS  PubMed  Google Scholar 

  161. Sun K, Min K. Antioxidative activity of sulfur-containing flavor compounds in garlic. Biosci Biotechnol Biochem. 1997;9:1482–5.

    Google Scholar 

  162. Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, et al. The mode of action of allicin: trap** of radicals and interaction with thiol containing proteins. Biochim Biophys Acta. 1998;1379:233–44.

    Article  CAS  PubMed  Google Scholar 

  163. Ryu JH, Park HJ, Jeong YY, Han S, Shin JH, et al. Aged red garlic extract suppresses nitric oxide production in lipopolysaccharide-treated RAW 264.7 macrophages through inhibition of NF-κB. J Med Food. 2015;18:439–45.

    Article  CAS  PubMed  Google Scholar 

  164. Han CY, Ki SH, Kim YW, Noh K, Lee DY, et al. Ajoene, a stable garlic by-product, inhibits high fat diet-induced hepatic steatosis and oxidative injury through LKB1-dependent AMPK activation. Antioxid Redox Signal. 2011;14:187–202.

    Article  CAS  PubMed  Google Scholar 

  165. Kim SH, Choi KC. Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol Res. 2013;29:229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Erba D, Casiraghi MC, Martinez-Conesa C, Goi G, Massaccesi L. Isoflavone supplementation reduces DNA oxidative damage and increases O-beta-N-acetyl-D-glucosaminidase activity in healthy women. Nutr Res. 2012;32:233–40.

    Article  CAS  PubMed  Google Scholar 

  167. Dar AA, Arumugam N. Lignans of sesame: purification methods, biological activities and biosynthesis—a review. Bioorg Chem. 2013;50:1–10.

    Article  CAS  PubMed  Google Scholar 

  168. Del Corno M, Varano B, Scazzocchio B, Filesi C, Masella R, et al. Protocatechuic acid inhibits human dendritic cell functional activation: role of PPARgamma up-modulation. Immunobiology. 2014;219:416–24.

    Article  PubMed  CAS  Google Scholar 

  169. Wei M, Chu X, Guan M, Yang X, **e X, et al. Protocatechuic acid suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model. Int Immunopharmacol. 2013;15:780–8.

    Article  CAS  PubMed  Google Scholar 

  170. Guo Y, Zhang Q, Zuo Z, Chu J, **ao H, et al. Protocatechuic acid (PCA) induced a better antiviral effect by immune enhancement in SPF chickens. Microb Pathog. 2018;114:233–8.

    Article  CAS  PubMed  Google Scholar 

  171. Lai X, Pei Q, Song X, Zhou X, Yin Z, et al. The enhancement of immune function and activation of NF-kappaB by resveratrol-treatment in immunosuppressive mice. Int Immunopharmacol. 2016;33:42–7.

    Article  CAS  PubMed  Google Scholar 

  172. Svajger U, Obermajer N, Jeras M. Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology. 2010;129:525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation. 2017;14:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Marchiani A, Rozzo C, Fadda A, Delogu G, Ruzza P. Curcumin and curcumin-like molecules: from spice to drugs. Curr Med Chem. 2014;21:204–22.

    Article  CAS  PubMed  Google Scholar 

  175. Huang A-C, Cheng H-Y, Lin T-S, Chen W-H, Lin J-H, et al. Epigallocatechin Gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T- and B-cells. In Vivo. 2013;27:627–34.

    CAS  PubMed  Google Scholar 

  176. Saleh F, Raghupathy R, Asfar S, Oteifa M, Al-Saleh N. Analysis of the effect of the active compound of green tea (EGCG) on the proliferation of peripheral blood mononuclear cells. BMC Complement Altern Med. 2014;14:322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Wang Y, Hu B, Peng Y, **ong X, **g W, et al. In silico exploration of the molecular mechanism of cassane diterpenoids on anti-inflammatory and immunomodulatory activity. J Chem Inf Model. 2019;59:2309–23.

    Article  CAS  PubMed  Google Scholar 

  178. Zhai T, Sun Y, Li H, Zhang J, Huo R, et al. Unique immunomodulatory effect of paeoniflorin on type I and II macrophages activities. J Pharmacol Sci. 2016;130:143–50.

    Article  CAS  PubMed  Google Scholar 

  179. Imamura M, Sasaki O, Okunishi K, Nakagome K, Harada H, et al. Perillyl alcohol suppresses antigen-induced immune responses in the lung. Biochem Biophys Res Commun. 2014;443:266–71.

    Article  CAS  PubMed  Google Scholar 

  180. Sun T, Yan X, Guo W, Zhao D. Evaluation of cytotoxicity and immune modulatory activities of soyasaponin Ab: an in vitro and in vivo study. Phytomedicine. 2014;21:1759–66.

    Article  CAS  PubMed  Google Scholar 

  181. Gautam M, Saha S, Bani S, Kaul A, Mishra S, et al. Immunomodulatory activity of Asparagus racemosus on systemic Th1/Th2 immunity: implications for immunoadjuvant potential. J Ethnopharmacol. 2009;121:241–7.

    Article  CAS  PubMed  Google Scholar 

  182. Pise MV, Rudra JA, Upadhyay A. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures. J Nat Sci Biol Med. 2015;6:415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gao F, Wei D, Bian T, **e P, Zou J, et al. Genistein attenuated allergic airway inflammation by modulating the transcription factors T-bet, GATA-3 and STAT-6 in a murine model of asthma. Pharmacology. 2012;89:229–36.

    Article  CAS  PubMed  Google Scholar 

  184. Smith BN, Dilger RN. Immunomodulatory potential of dietary soybean-derived isoflavones and saponins in pigs. J Anim Sci. 2018;96:1288–304.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Lin CH, Shen ML, Zhou N, Lee CC, Kao ST, et al. Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice. PLoS One. 2014;9:e96091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. De Smet E, Mensink RP, Boekschoten MV, de Ridder R, Germeraad WT, et al. An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers. Br J Nutr. 2015;113:794–802.

    Article  PubMed  CAS  Google Scholar 

  187. Yuk JE, Woo JS, Yun CY, Lee JS, Kim JH, et al. Effects of lactose-beta-sitosterol and beta-sitosterol on ovalbumin-induced lung inflammation in actively sensitized mice. Int Immunopharmacol. 2007;7:1517–27.

    Article  CAS  PubMed  Google Scholar 

  188. Bouic PJ. The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years. Curr Opin Clin Nutr Metab Care. 2001;4:471–5.

    Article  CAS  PubMed  Google Scholar 

  189. Bouic PJ, Lamprecht JH. Plant sterols and sterolins: a review of their immune-modulating properties. Altern Med Rev. 1999;4:170–7.

    CAS  PubMed  Google Scholar 

  190. Liang YT, Chen JN, Zuo YY, Ma KY, Jiang Y, et al. Blueberry anthocyanins at doses of 0.5 and 1% lowered plasma cholesterol by increasing fecal excretion of acidic and neutral sterols in hamsters fed a cholesterol-enriched diet. Eur J Nutr. 2013;52:869–75.

    Article  CAS  PubMed  Google Scholar 

  191. Du C, Shi Y, Ren Y, Wu H, Yao F, et al. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRalpha pathway in HK-2 cells. Drug Des Devel Ther. 2015;9:5099–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Radhiga T, Sundaresan A, Viswanathan P, Pugalendi KV. Effect of protocatechuic acid on lipid profile and DNA damage in D-galactosamine-induced hepatotoxic rats. J Basic Clin Physiol Pharmacol. 2016;27:505–14.

    Article  CAS  PubMed  Google Scholar 

  193. Haghighatdoost F, Hariri M. Effect of resveratrol on lipid profile: an updated systematic review and meta-analysis on randomized clinical trials. Pharmacol Res. 2018;129:141–50.

    Article  CAS  PubMed  Google Scholar 

  194. Zang Y, Zhang L, Igarashi K, Yu C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct. 2015;6:834–41.

    Article  CAS  PubMed  Google Scholar 

  195. Shishikura Y, Khokhar S, Murray BS. Effects of tea polyphenols on emulsification of olive oil in a small intestine model system. J Agric Food Chem. 2006;54:1906–13.

    Article  CAS  PubMed  Google Scholar 

  196. Lu CH, Hwang LS. Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line. Food Chem. 2008;111:67–71.

    Article  CAS  Google Scholar 

  197. Bursill CA, Roach PD. A green tea catechin extract upregulates the hepatic low-density lipoprotein receptor in rats. Lipids. 2007;42:621–7.

    Article  CAS  PubMed  Google Scholar 

  198. Yang W, Shen Z, Wen S, Wang W, Hu M. Mechanisms of multiple neurotransmitters in the effects of Lycopene on brain injury induced by Hyperlipidemia. Lipids Health Dis. 2018;17:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Sultan Alvi S, Ansari IA, Khan I, Iqbal J, Khan MS. Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic Biol Med. 2017;108:394–403.

    Article  CAS  PubMed  Google Scholar 

  200. Prashanth A, Jeyakumar SM, Giridharan NV, Vajreswari A. Vitamin A-enriched diet modulates reverse cholesterol transport in hypercholesterolemic obese rats of the WNIN/Ob strain. J Atheroscler Thromb. 2014;21:1197–207.

    Article  CAS  PubMed  Google Scholar 

  201. Rai SK, Sharma M, Tiwari M. Inhibitory effect of novel diallyldisulfide analogs on HMG-CoA reductase expression in hypercholesterolemic rats: CREB as a potential upstream target. Life Sci. 2009;85:211–9.

    Article  CAS  PubMed  Google Scholar 

  202. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, et al. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials (vol 85, pg 1148, 2007). Am J Clin Nutr. 2007;86:809.

    CAS  Google Scholar 

  203. Peterson DW. Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks. Proc Soc Exp Biol Med. 1951;78:143–7.

    Article  CAS  PubMed  Google Scholar 

  204. Plat J, Mackay D, Baumgartner S, Clifton PM, Gylling H, et al. Progress and prospective of plant sterol and plant stanol research: report of the Maastricht meeting. Atherosclerosis. 2012;225:521–33.

    Article  CAS  PubMed  Google Scholar 

  205. Hayes KC, Pronczuk A, Wijendran V, Beer M. Free phytosterols facilitate excretion of endogenous cholesterol in gerbils. J Nutr Biochem. 2005;16:305–11.

    Article  CAS  PubMed  Google Scholar 

  206. Brauner R, Johannes C, Ploessl F, Bracher F, Lorenz RL. Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver X receptor alpha activation, and expression of the basolateral sterol exporter ATP-binding cassette A1 in Caco-2 enterocytes. J Nutr. 2012;142:981–9.

    Article  CAS  PubMed  Google Scholar 

  207. Calpe-Berdiel L, Escola-Gil JC, Blanco-Vaca F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis. 2009;203:18–31.

    Article  CAS  PubMed  Google Scholar 

  208. Lin X, Racette SB, Lefevre M, Ma L, Spearie CA, et al. Combined effects of ezetimibe and phytosterols on cholesterol metabolism: a randomized, controlled feeding study in humans. Circulation. 2011;124:596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Otton R, Bolin AP, Ferreira LT, Marinovic MP, Rocha ALS, et al. Polyphenol-rich green tea extract improves adipose tissue metabolism by down-regulating miR-335 expression and mitigating insulin resistance and inflammation. J Nutr Biochem. 2018;57:170–9.

    Article  CAS  PubMed  Google Scholar 

  210. Santangelo C, Zicari A, Mandosi E, Scazzocchio B, Mari E, et al. Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives. Br J Nutr. 2016;115:1129–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. **ao JB, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem. 2015;22:23–38.

    Article  PubMed  CAS  Google Scholar 

  212. Sun CD, Zhang B, Zhang JK, Xu CJ, Wu YL, et al. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic beta cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J Med Food. 2012;15:288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Asgary S, Rafieian-Kopaei M, Shamsi F, Najafi S, Sahebkar A. Biochemical and histopathological study of the anti-hyperglycemic and anti-hyperlipidemic effects of cornelian cherry (Cornus mas L.) in alloxan-induced diabetic rats. J Complement Integr Med. 2014;11:63–9.

    Article  PubMed  Google Scholar 

  214. Semaming Y, Kukongviriyapan U, Kongyingyoes B, Thukhammee W, Pannangpetch P. Protocatechuic acid restores vascular responses in rats with chronic diabetes induced by streptozotocin. Phytother Res. 2016;30:227–33.

    Article  CAS  PubMed  Google Scholar 

  215. Bhattacharjee N, Dua TK, Khanra R, Joardar S, Nandy A, et al. Protocatechuic acid, a phenolic from Sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Front Pharmacol. 2017;8:251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Harini R, Pugalendi KV. Antihyperglycemic effect of protocatechuic acid on streptozotocin-diabetic rats. J Basic Clin Physiol Pharmacol. 2010;21:79–91.

    Article  PubMed  Google Scholar 

  217. Zhu X, Wu C, Qiu S, Yuan X, Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr Metab (Lond). 2017;14:60.

    Article  CAS  Google Scholar 

  218. Youl E, Bardy G, Magous R, Cros G, Sejalon F, et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic beta-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol. 2010;161:799–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chen S, Jiang HM, Wu XS, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediat Inflamm. 2016;2016:9340637.

    Article  Google Scholar 

  220. Oboh G, Ademosun AO, Ogunsuyi OB. Quercetin and its role in chronic diseases. Adv Exp Med Biol. 2016;929:377–87.

    Article  CAS  PubMed  Google Scholar 

  221. Ali MM, Agha FG. Amelioration of streptozotocin-induced diabetes mellitus, oxidative stress and dyslipidemia in rats by tomato extract lycopene. Scand J Clin Lab Invest. 2009;69:371–9.

    Article  CAS  PubMed  Google Scholar 

  222. Wang J, Zhang X, Lan H, Wang W. Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): a meta-analysis of randomized controlled trials. Food Nutr Res. 2017;61:1377571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Padiya R, Khatua TN, Bagul PK, Kuncha M, Banerjee SK. Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats. Nutr Metab (Lond). 2011;8:53.

    Article  CAS  Google Scholar 

  224. Gu X, Zhu YZ. Therapeutic applications of organosulfur compounds as novel hydrogen sulfide donors and/or mediators. Expert Rev Clin Pharmacol. 2011;4:123–33.

    Article  CAS  PubMed  Google Scholar 

  225. Yun HM, Ban JO, Park KR, Lee CK, Jeong HS, et al. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther. 2014;142:183–95.

    Article  CAS  PubMed  Google Scholar 

  226. Liu CT, Hse H, Lii CK, Chen PS, Sheen LY. Effects of garlic oil and diallyl trisulfide on glycemic control in diabetic rats. Eur J Pharmacol. 2005;516:165–73.

    Article  CAS  PubMed  Google Scholar 

  227. Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, et al. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med. 2017;9:eaah4477.

    Article  PubMed  CAS  Google Scholar 

  228. Xu Y, Fu JF, Chen JH, Zhang ZW, Zou ZQ, et al. Sulforaphane ameliorates glucose intolerance in obese mice via the upregulation of the insulin signaling pathway. Food Funct. 2018;9:4695–701.

    Article  CAS  PubMed  Google Scholar 

  229. Sekikawa A, Ihara M, Lopez O, Kakuta C, Lopresti B, et al. Effect of S-equol and soy isoflavones on heart and brain. Curr Cardiol Rev. 2019;15:114–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ding M, Pan A, Manson JE, Willett WC, Malik V, et al. Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr. 2016;70:1381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Xu Z, Ju J, Wang K, Gu C, Feng Y. Evaluation of hypoglycemic activity of total lignans from Fructus Arctii in the spontaneously diabetic Goto-Kakizaki rats. J Ethnopharmacol. 2014;151:548–55.

    Article  CAS  PubMed  Google Scholar 

  232. Kwon DY, Kim DS, Yang HJ, Park S. The lignan-rich fractions of Fructus Schisandrae improve insulin sensitivity via the PPAR-gamma pathways in in vitro and in vivo studies. J Ethnopharmacol. 2011;135:455–62.

    Article  CAS  PubMed  Google Scholar 

  233. Misawa E, Tanaka M, Nomaguchi K, Nabeshima K, Yamada M, et al. Oral ingestion of aloe vera phytosterols alters hepatic gene expression profiles and ameliorates obesity-associated metabolic disorders in zucker diabetic fatty rats. J Agric Food Chem. 2012;60:2799–806.

    Article  CAS  PubMed  Google Scholar 

  234. Ponnulakshmi R, Shyamaladevi B, Vijayalakshmi P, Selvaraj J. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol Mech Methods. 2019;29:276–90.

    Article  CAS  PubMed  Google Scholar 

  235. Kruger MJ, Davies N, Myburgh KH, Lecour S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int. 2014;59:41–52.

    Article  CAS  Google Scholar 

  236. Xu M, Xue W, Ma Z, Bai J, Wu S. Resveratrol reduces the incidence of portal vein system thrombosis after splenectomy in a rat fibrosis model. Oxidative Med Cell Longev. 2016;2016:7453849.

    Article  Google Scholar 

  237. Lannan KL, Refaai MA, Ture SK, Morrell CN, Blumberg N, et al. Resveratrol preserves the function of human platelets stored for transfusion. Br J Haematol. 2016;172:794–806.

    Article  CAS  PubMed  Google Scholar 

  238. Kirimlioglu V, Sozen H, Turkoglu S, Haberal M. Protective effect of resveratrol, a red wine constituent polyphenol, on rats subjected to portal vein thrombosis. Transplant Proc. 2008;40:290–2.

    Article  CAS  PubMed  Google Scholar 

  239. Prakash P, Misra A, Surin WR, Jain M, Bhatta RS, et al. Anti-platelet effects of Curcuma oil in experimental models of myocardial ischemia-reperfusion and thrombosis. Thromb Res. 2011;127:111–8.

    Article  CAS  PubMed  Google Scholar 

  240. Mayanglambam A, Dangelmaier CA, Thomas D, Damodar Reddy C, Daniel JL, et al. Curcumin inhibits GPVI-mediated platelet activation by interfering with the kinase activity of Syk and the subsequent activation of PLCgamma2. Platelets. 2010;21:211–20.

    Article  CAS  PubMed  Google Scholar 

  241. Pellegrino D. Antioxidants and cardiovascular risk factors. Diseases. 2016;4:11.

    Article  PubMed Central  Google Scholar 

  242. Sawardekar SB, Patel TC, Uchil D. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: an in vitro study. Indian J Pharmacol. 2016;48:26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Endale M, Lee WM, Kamruzzaman SM, Kim SD, Park JY, et al. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br J Pharmacol. 2012;167:109–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Khin M, Jones AM, Cech NB, Caesar LK. Phytochemical analysis and antimicrobial efficacy of Macleaya cordata against extensively drug-resistant Staphylococcus aureus. Nat Prod Commun. 2018;13:1479–83.

    Google Scholar 

  245. Abachi S, Lee S, Rupasinghe HP. Molecular mechanisms of inhibition of Streptococcus species by phytochemicals. Molecules. 2016;21:215.

    Article  PubMed Central  CAS  Google Scholar 

  246. Wei LL, Yang M, Huang L, Li JL. Antibacterial and antioxidant flavonoid derivatives from the fruits of Metaplexis japonica. Food Chem. 2019;289:308–12.

    Article  CAS  PubMed  Google Scholar 

  247. **e Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015;22:132–49.

    Article  CAS  PubMed  Google Scholar 

  248. Dai XQ, Cai WT, Wu X, Chen Y, Han FM. Protocatechuic acid inhibits hepatitis B virus replication by activating ERK1/2 pathway and down-regulating HNF4alpha and HNF1alpha in vitro. Life Sci. 2017;180:68–74.

    Article  CAS  PubMed  Google Scholar 

  249. Ajiboye TO, Habibu RS, Saidu K, Haliru FZ, Ajiboye HO, et al. Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiology. 2017;6:e00472.

    Article  CAS  Google Scholar 

  250. Bostanghadiri N, Pormohammad A, Chirani AS, Pouriran R, Erfanimanesh S, et al. Comprehensive review on the antimicrobial potency of the plant polyphenol resveratrol. Biomed Pharmacother. 2017;95:1588–95.

    Article  CAS  PubMed  Google Scholar 

  251. Liu T, Zang N, Zhou N, Li W, **e X, et al. Resveratrol inhibits the TRIF-dependent pathway by upregulating sterile alpha and armadillo motif protein, contributing to anti-inflammatory effects after respiratory syncytial virus infection. J Virol. 2014;88:4229–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Clouser CL, Chauhan J, Bess MA, van Oploo JL, Zhou D, et al. Anti-HIV-1 activity of resveratrol derivatives and synergistic inhibition of HIV-1 by the combination of resveratrol and decitabine. Bioorg Med Chem Lett. 2012;22:6642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Xu J, Yin Z, Li L, Cheng A, Jia R, et al. Inhibitory effect of resveratrol against duck enteritis virus in vitro. PLoS One. 2013;8:e65213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Vaughn AR, Haas KN, Burney W, Andersen E, Clark AK, et al. Potential role of curcumin against biofilm-producing organisms on the skin: a review. Phytother Res. 2017;31:1807–16.

    Article  CAS  PubMed  Google Scholar 

  255. Gutierrez-del-Rio I, Fernandez J, Lombo F. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols. Int J Antimicrob Agents. 2018;52:309–15.

    Article  CAS  PubMed  Google Scholar 

  256. Amoussa AM, Lagnika L, Bourjot M, Vonthron-Senecheau C, Sanni A. Triterpenoids from Acacia ataxacantha DC: antimicrobial and antioxidant activities. BMC Complement Altern Med. 2016;16:284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Roncero AM, Tobal IE, Moro RF, Diez D, Marcos IS. Halimane diterpenoids: sources, structures, nomenclature and biological activities. Nat Prod Rep. 2018;35:955–91.

    Article  CAS  PubMed  Google Scholar 

  258. Kurekci C, Padmanabha J, Bishop-Hurley SL, Hassan E, Al Jassim RAM, et al. Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments. Int J Food Microbiol. 2013;166:450–7.

    Article  CAS  PubMed  Google Scholar 

  259. Putnik P, Gabric D, Roohinejad S, Barba FJ, Granato D, et al. An overview of organosulfur compounds from Allium spp.: from processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019;276:680–91.

    Article  CAS  PubMed  Google Scholar 

  260. Gularte MS, Anghinoni JM, Abenante L, Voss GT, de Oliveira RL, et al. Synthesis of chitosan derivatives with organoselenium and organosulfur compounds: characterization, antimicrobial properties and application as biomaterials. Carbohydr Polym. 2019;219:240–50.

    Article  CAS  PubMed  Google Scholar 

  261. Romeo L, Iori R, Rollin P, Bramanti P, Mazzon E. Isothiocyanates: an overview of their antimicrobial activity against human infections. Molecules. 2018;23:624.

    Article  PubMed Central  CAS  Google Scholar 

  262. Aires A, Mota VR, Saavedra MJ, Rosa EAS, Bennett RN. The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J Appl Microbiol. 2009;106:2086–95.

    Article  CAS  PubMed  Google Scholar 

  263. Hussain H, Green IR. A patent review of the therapeutic potential of isoflavones (2012–2016). Expert Opin Ther Pat. 2017;27:1135–46.

    Article  CAS  PubMed  Google Scholar 

  264. Braga Ribeiro AM, Sousa JN, Costa LM, Oliveira FAA, Dos Santos RC, et al. Antimicrobial activity of Phyllanthus amarus Schumach. & Thonn and inhibition of the NorA efflux pump of Staphylococcus aureus by Phyllanthin. Microb Pathog. 2019;130:242–6.

    Article  CAS  PubMed  Google Scholar 

  265. Lee SH, Choi BY, Kho AR, Jeong JH, Hong DK, et al. Protective effects of protocatechuic acid on seizure-induced neuronal death. Int J Mol Sci. 2018;19:187.

    Article  PubMed Central  CAS  Google Scholar 

  266. Winter AN, Brenner MC, Punessen N, Snodgrass M, Byars C, et al. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid. Oxidative Med Cell Longev. 2017;2017:6297080.

    Article  Google Scholar 

  267. Wang Z, Pan X, Wang D, Sun H, Han F, et al. Protective effects of protocatechuic acid on retinal ganglion cells from oxidative damage induced by H2O2. Neurol Res. 2015;37:159–66.

    Article  PubMed  CAS  Google Scholar 

  268. Zhang HN, An CN, Xu M, Guo DA, Li M, et al. Protocatechuic acid inhibits rat pheochromocytoma cell damage induced by a dopaminergic neurotoxin. Biol Pharm Bull. 2009;32:1866–9.

    Article  CAS  PubMed  Google Scholar 

  269. Hodis HN, Mack WJ. The timing hypothesis and hormone replacement therapy: a paradigm shift in the primary prevention of coronary heart disease in women. Part 2: comparative risks. J Am Geriatr Soc. 2013;61:1011–8.

    Article  PubMed  Google Scholar 

  270. Thorp AA, Sinn N, Buckley JD, Coates AM, Howe PR. Soya isoflavone supplementation enhances spatial working memory in men. Br J Nutr. 2009;102:1348–54.

    Article  CAS  PubMed  Google Scholar 

  271. Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson’s disease. Neurotox Res. 2013;23:145–53.

    Article  CAS  PubMed  Google Scholar 

  272. Arbabi E, Hamidi G, Talaei SA, Salami M. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism. Iran J Basic Med Sci. 2016;19:1285–90.

    PubMed  PubMed Central  Google Scholar 

  273. Wu HC, Hu QL, Zhang SJ, Wang YM, ** ZK, et al. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant alpha-synuclein. Neural Regen Res. 2018;13:1375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Arbabi E, Hamidi G, Talaei SA, Salami M. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism. Iran J Basic Med Sci. 2016;19:1285–91.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y. (2022). Phytochemicals and Health. In: Zhang, L. (eds) Nutritional Toxicology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0872-9_12

Download citation

Publish with us

Policies and ethics

Navigation