Nature-Inspired Biomimetic Polymeric Materials and Their Applications

  • Reference work entry
  • First Online:
Handbook of Biopolymers

Abstract

Biomimetics, an interdisciplinary field of science denoting synthetic methods which mimic biochemical processes in nature, has contributed to the invention of many novel technologies and designs. In this chapter, we discuss the various nature-inspired biomimetic polymers, its advantages and limitations, applications, and future prospects. Classification of biomimetic materials is broadly based on function, process, structure, and molecular aspect of material, which is the source of biomimicry. Biomimetic materials find its applications in various fields like architecture, robotics, superhydrophobic, self-cleaning materials, adhesives, nanotechnology, and biomedical. Biocompatible and bioactive substances from biological sources fulfill various functions that are critical for the sustainability of life. Significant research based on architecture of biological materials and their tissue interaction has been carried out toward engineering revolutionary bioinspired structures that show superior biocompatibility and bioactivity. Advancements in biomimetic research makes way for the creation of novel nature inspired biopolymers which sustainably meet design challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 599.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 649.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • R.E. Abouzeid, R. Khiari, D. Beneventi, A. Dufresne, Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering. Biomacromolecules 19, 4442–4452 (2018)

    CAS  Google Scholar 

  • K.C. Ajithkumar, K. Pramod, Doxorubicin-DNA adduct entrenched and motif tethered artificial virus encased in pH-responsive polypeptide complex for targeted cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 89, 387–400 (2018)

    CAS  Google Scholar 

  • M. Alipour, M. Baneshi, S. Hosseinkhani, J. Reza, A.A. Jabari, M. Akrami, J. Mehrzad, H. Bardania, Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review. J. Biomed. Mater. Res. Part A. 108(4), 839–850 (2020). https://doi.org/10.1002/jbm.a.36862

    Article  CAS  Google Scholar 

  • J.F. Almeida, P. Ferreira, A. Lopes, M.H. Gil, Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int. J. Biol. Macromol. 49, 948–954 (2011)

    CAS  Google Scholar 

  • R. Alvarado, J.R.V. Baudrit, Bioinspired engineering at nanoscale: Integration of synthetic biology and bionanotechnology. J. Bionanosci. 7, 485–496 (2013)

    CAS  Google Scholar 

  • E. Arzt, Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos. Mater. Sci. Eng. C Biol. Sci. 26, 1245–1250 (2006)

    CAS  Google Scholar 

  • K.S. Balu, R. Suriyaprabha, S. Karthik, S. Surendhiran, W.K. Aicher, V. Rajendran, Biomimetic TiO2–chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications. Mater. Sci. Eng. C 110, 110710 (2020)

    Google Scholar 

  • Y. Bar-Cohen, Biomimetics: Biologically inspired technologies (CRC Press. Taylor & Francis, Boca Raton, 2006). ISBN 10: 0-8493-3163-3

    Google Scholar 

  • W. Barthlott, M. Mail, B. Bhushan, K. Koch, Plant surfaces: Structures and functions for biomimetic innovations. Nano-Micro Lett. 9, 23 (2017)

    Google Scholar 

  • P. Bazos, P. Magne, Bio-emulation: Biomimetically emulating nature utilizing a histo-anatomic approach; structural analysis. Eur. J. Esthet. Dent. 6, 8–19 (2011)

    Google Scholar 

  • J.M. Benyus, Biomimicry (HarperCollins e-books, New York, 2009)

    Google Scholar 

  • E. Bini, D.P. Knight, D.L. Kaplan, Map** domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335, 27–40 (2004)

    CAS  Google Scholar 

  • R.H.C. Bonser, Patented biologically-inspired technological innovations: A twenty-year view. J. Bionic Eng. 3, 39–41 (2006)

    Google Scholar 

  • K. Breuer, Flight of the RoboBee. pp. 448–449 (2019)

    Google Scholar 

  • J.A. Burdick, K.S. Anseth, Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23, 4315–4323 (2002)

    CAS  Google Scholar 

  • P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)

    CAS  Google Scholar 

  • A. Chun, Sticky plants. Nat. Nanotech. (2016). https://doi.org/10.1038/nnano.2016.126

  • A.D. Cook, J.S. Hrkach, N.N. Gao, I.M. Johnson, U.B. Pajvani, S.M. Cannizzaro, R. Langer, Characterization and development of RGDpeptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J. Biomed. Mater. Res. 35, 513–523 (1997)

    CAS  Google Scholar 

  • Y. Cui, H. Gong, Y. Wang, D. Li, H. Bai, A thermally insulating textile inspired by polar bear hair. Adv. Mater. 30, 1706807 (2018)

    Google Scholar 

  • Q.F. Dang, S.H. Zou, X.G. Chen, C.S. Liu, J.J. Li, X. Zhou, Y. Liu, X.J. Cheng, Characterizations of chitosan-based highly porous hydrogel – The effects of the solvent. J. Appl. Polym. Sci. 125, E88–E98 (2012)

    CAS  Google Scholar 

  • H. Dong, Z. Wu, D. Chen, M. Tan, J. Yu, Development of a whale-shark-inspired gliding robotic fish with high maneuverability. IEEE/ASME Trans. Mechatron. 25, 2824–2834 (2020)

    Google Scholar 

  • S. Drotleff et al., Biomimetic polymers in pharmaceutical and biomedical sciences. Eur. J. Pharm. Biopharm. 58, 385–407 (2004)

    Google Scholar 

  • P.D. Drumheller, J.A. Hubbell, Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. Anal. Biochem. 222, 380–388 (1994)

    CAS  Google Scholar 

  • J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 24, 4337–4351 (2003) ISSN 0142-9612

    Google Scholar 

  • M. Ebrahimi, Biomimetic principle for development of nanocomposite biomaterials in tissue engineering, in Applications of Nanocomposite Materials in Orthopedics. Woodhead Publishing Series in Biomaterials, ed. by A. M. Inamuddin, A. M. Asiri (Woodhead Publishing, Cambridge, 2019), pp. 287–306

    Google Scholar 

  • P.M. Favi, S. Yi, S.C. Lenaghan, L. **a, M. Zhang, Inspiration from the natural world: From bio-adhesives to bio-inspired adhesives. J. Adhes. Sci. Technol. 28, 290–319 (2014)

    CAS  Google Scholar 

  • P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)

    CAS  Google Scholar 

  • P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger, Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 2115–2123 (2004)

    CAS  Google Scholar 

  • K.M. Galler, R.N. D’Souza, J.D. Hartgerink, Biomaterials and their potential applications for dental tissue engineering. J. Mater. Chem. 20, 8730–8746 (2010)

    CAS  Google Scholar 

  • L. Gao, T.J. McCarthy, “Artificial lotus leaf” prepared using a 1945 patent and a commercial textile. Langmuir 22(14), 5998–6000 (2006)

    CAS  Google Scholar 

  • D.E. Glaser, C. Viney, Ratner et al., biomaterials science an introduction to materials in medicine: Book – l.2.18 biomimetic materials, 3rd edn, in B. Ratner, A. Hoffman, F. Schoen, J. lemons. eBook (2012). ISBN: 9780080877808

    Google Scholar 

  • M. Hacker, J. Tessmar, M. Neubauer, A. Blaimer, T. Blunk, A. Gopferich, M.B. Schulz, Towards biomimetic scaffolds: Anhydrous scaffold fabrication from biodegradable amine-reactive deblock copolymers. Biomaterials 24, 4459–4473 (2003)

    CAS  Google Scholar 

  • M.C. Hanson, A. Bershteyn, M.P. Crespo, D.J. Irvine, Antigen delivery by lipid-enveloped PLGA microparticle vaccines mediated by in situ vesicle shedding. Biomacromolecules 15, 2475–2248 (2014)

    CAS  Google Scholar 

  • E.W. Hawkes, V. Eason Eric, C.L. David, C.R. Mark, Human climbing with efficiently scaled gecko-inspired dry adhesives. J. R. Soc. Interface, 122014067520140675 12(102), 2014067 (2015)

    Google Scholar 

  • A.M. Hopkins, E. DeSimone, K. Chwalek, D.L. Kaplan, 3D in vitro modelling of the central nervous system. Prog. Neurobiol. 125, 1–25 (2015). https://doi.org/10.1016/j.pneurobio.2014.11.003

    Article  Google Scholar 

  • K.T. Hsiao, J. Alms, S.G. Advani, Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14, 791 (2003)

    CAS  Google Scholar 

  • S. Huang, X. Fu, Naturally derived materials-based cell and drug delivery systems in skin regeneration. J. Control. Release 142, 149–159 (2010)

    CAS  Google Scholar 

  • Y. Huang, Y. Wang, L. Tan, L. Sun, J. Petrosino, M. Cui, F. Hao, M. Zhang, Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. Proc. Natl. Acad. Sci. 113(23) (2016). https://doi.org/10.1073/pnas.1600406113

  • J.A. Hubbell, Biomaterials in tissue engineering. Bio/Technology 13, 565–576 (1995)

    CAS  Google Scholar 

  • B. Huskinson, M. Marshak, C. Suh, et al., A metal-free organic–inorganic aqueous flow battery. Nature 505, 195–198 (2014)

    CAS  Google Scholar 

  • J. Hwang, Y. Jeong, J.M. Park, K.H. Lee, J.W. Hong, J. Choi, Biomimetics: Forecasting the future of science, engineering, and medicine. Rev. Int. J. Nanomed. 8(10), 5701–5713 (2015)

    Google Scholar 

  • Y. Ito, J. Zheng, Y. Imanishi, K. Yonezawa, M. Kasuga, Protein-free cell culture on an artificial substrate with covalently immobilized insulin. Proc. Natl. Acad. Sci. U. S. A. 93, 3598–3601 (1996)

    CAS  Google Scholar 

  • R. Jamaledin, R. Sartorius, C.D. Natale, R. Vecchione, P. De Berardinis, P.A. Netti, Recombinant filamentous bacteriophages encapsulated in biodegradable polymeric microparticles for stimulation of innate and adaptive immune responses. Microorganisms. 8, 650 (2020)

    CAS  Google Scholar 

  • X. Jiang et al., Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv. Mater. 25, 227–232 (2013)

    CAS  Google Scholar 

  • S. Jo, P.S. Engel, A.G. Mikos, Synthesis of poly(ethylene glycol)- tethered poly(propylene fumarate) and its modification with GRGD peptide. Polymer 41, 7595–7604 (2000)

    CAS  Google Scholar 

  • D. Joung, V. Truong, C.C. Neitzke, S.Z. Guo, P.J. Walsh, J.R. Monat, F. Meng, S.H. Park, J.R. Dutton, A.M. Parr, M.C. McAlpine, 3D printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv. Funct. Mater. 28, 1801850 (2018). https://doi.org/10.1002/adfm.201801850

    Article  CAS  Google Scholar 

  • A. Kaboorani, B. Riedl, Effects of adding Nano-clay on performance of polyvinyl acetate (PVA) as a wood adhesive. Compos. A: Appl. Sci. Manuf. 42, 1031–1039 (2011)

    Google Scholar 

  • S.N. Kaushik, B. Kim, A.M. Walma, S.C. Choi, H. Wu, J.J. Mao, H.W. Jun, K. Cheon, Biomimetic microenvironments for regenerative endodontics. Biomater Res. 2, 20:14 (2016)

    Google Scholar 

  • T. Khudiyev, T. Dogan, M. Bayindir, Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L.) drakes. Sci. Rep. 4, 4718 (2014)

    Google Scholar 

  • S. Kim, M. Sitti, Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl. Phys. Lett. 89, 261911 (2006)

    Google Scholar 

  • H. King, S.A. Ocko, L. Mahadevan, Termite mounds harness diurnal temperature oscillations for ventilation. Proc. Natl. Acad. Sci. 112, 37 (2015). https://doi.org/10.1073/pnas.1423242112

    Article  CAS  Google Scholar 

  • L. Klaus et al., Integrin-based therapeutics: Biological basis, clinical use and new drugs. Nat. Rev.-Drug Discov. 15(3), 173–183 (2016)

    Google Scholar 

  • D.S. Kohane, R. Langer, Polymeric biomaterials in tissue engineering. Pediatr. Res. 63, 487–491 (2008)

    CAS  Google Scholar 

  • A.P. Kshirsagar, Biomimicry – Nature inspired building structures. Int. J. Eng. Res. Tech. 10, 1 (2017). ISSN 0974-3154, International Research Publication House

    Google Scholar 

  • J.L. Langer, N.A. Peppas, Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J. 49, 2990–3006 (2003)

    CAS  Google Scholar 

  • K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001)

    CAS  Google Scholar 

  • K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci. 37(1), 106–126 (2012)

    Google Scholar 

  • N. Lee et al., Hierarchical multiscale structure – Property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. J. R. Soc. Interface 11, 96 (2014)

    Google Scholar 

  • Y. Liu, X. Chen, J.H. **n, Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinspir. Biomim. 3(4), 046007 (2008)

    Google Scholar 

  • Y. Liu, X. Yina, J. Zhanga, S. Yub, Z. Hana, L. Ren, A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy. Electrochimica Acta 125, 395–403 (2014)

    Google Scholar 

  • D. Lopes, C. Martins-Cruz, M. Oliveira, J. Mano, Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 185, 240–275 (2018)

    CAS  Google Scholar 

  • Y. Lu, P.S. Low, Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54, 675–693 (2002)

    CAS  Google Scholar 

  • P.X. Ma, Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60(2), 184–198 (2008)

    CAS  Google Scholar 

  • G. Mcclure, Biomimicry: Inspiration from nature, technology designer. (2019). https://www.technologydesigner.com/2019/12/18/biomimicry-design-inspiration-from-nature/

  • P. Messersmith, Mussel-inspired materials for surgical repair and drug delivery, in Translation of Mussel Adhesion to Beneficial New Concepts and Materials, Proceedings of the American Association for the Advancement of Science (AAAS) Annual Meeting, (Boston, 2013), pp. 14–18

    Google Scholar 

  • M.A. Meyers, P.Y. Chen, A.Y. Lin, Y. Seki, Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008)

    CAS  Google Scholar 

  • H. Mndlovu, L.C. du Toit, P. Kumar, T. Marimuthu, P.P.D. Kondiah, Y.E. Choonara, et al., Development of a fluid-absorptive alginate-chitosan bioplatform for potential application as a wound dressing. Carbohydr. Polym. 222, 114988 (2019)

    CAS  Google Scholar 

  • A.S. Mostaert, S.P. Jarvis, Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives. Nanotechnology 18, 044010 (2006)

    Google Scholar 

  • S.K. Motwani, S. Chopra, S. Talegaonkar, K. Kohli, F.J. Ahmad, R.K. Khar, Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimization and in vitro characterisation. Eur. J. Pharm. Biopharm. 68, 513–525 (2008)

    CAS  Google Scholar 

  • D. Moura, J.F. Mano, M.C. Paivac, N.M. Alves, Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Sci. Tech. Adv. Mater. 17, 626–643 (2016)

    CAS  Google Scholar 

  • K.H. Park, Arg-Gly-Asp (RGD) sequence conjugated in a synthetic copolymer bearing a sugar moiety for improved culture of parenchymal cells (hepatocytes). Biotechnol. Lett. 24, 1401–1406 (2002)

    CAS  Google Scholar 

  • R. Patterson, Otto Schmitt’s contributions to basic and applied biomedical engineering and to the profession, in Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2009). https://doi.org/10.1109/iembs.2009.5334039

    Chapter  Google Scholar 

  • E.F. Plow, T.A. Haas, L. Zhang, J. Loftus, J.W. Smith, Ligand binding to integrins. J. Biol. Chem. 275(29), 21785–21788 (2000)

    CAS  Google Scholar 

  • R.A. Quirk, W.C. Chan, M.C. Davies, S.J.B. Tendler, K.M. Shakesheff, Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials 22, 865–872 (2001)

    CAS  Google Scholar 

  • E. Ramirez, A.F. Rodriguez, H.H. Herrera, E.M. Sandi, J.R. Baudrit, Nanobiodiversity and biomimetic adhesives development: From nature to production and application. J. Biomater. Nanobiotech. 10, 78–101 (2019)

    Google Scholar 

  • E.J. Reed, L. Klumb, M. Koobatian, C. Christopher Viney, Biomimicry as a route to new materials: What kinds of lessons are useful? Phil. Trans. R. Soc. A 367, 1571–1585 (2009)

    CAS  Google Scholar 

  • J.A. Rowley, D.J. Mooney, Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res. 60, 217–223 (2002)

    CAS  Google Scholar 

  • Y. Saikawa, K. Hashimoto, M. Nakata, M. Yoshihara, K. Nagai, M. Ida, T. Komiya, Pigment chemistry: The red sweat of the hippopotamus. Nature 429(6990), 363 (2004). https://doi.org/10.1038/429363a

    Article  CAS  Google Scholar 

  • P. Schaffner, J. Meyer, M. Dard, R. Wenz, B. Nies, S. Verrier, H. Kessler, M. Kantlehner, Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies. J. Mater. Sci. Mater. Med. 10, 837–839 (1999)

    CAS  Google Scholar 

  • O. Schmitt, Some interesting and useful biomimetic transforms, in Proceedings of the 3rd International Biophysics Congress, (IUPAB, Boston/Paris, 1969), p. 297

    Google Scholar 

  • J. Scobey-Thal, Biomimetics: A short history (2014). https://foreignpolicy.com/2014/12/01/biomimetics-a-short-history/

  • G.J. Shah, M. Sitti, Modeling and design of biomimetic adhesives inspired by Gecko Foot-Hairs. in IEEE International Conference on Robotics and Biomimetics (2004), pp. 873–878

    Google Scholar 

  • S. Shigemi, A. Goswami, P. Vadakkepat, ASIMO and humanoid robot research at Honda. in Humanoid Robotics: A Reference (Springer, 2018), pp. 55–90

    Google Scholar 

  • M. Shimomura, The new trends in next generation biomimetics material technology: learning from biodiversity. Quart Rev. 37, 53–75 (2010)

    Google Scholar 

  • T. Stegmaier, V. Arnim, M. Linke, M. Milwich, J. Sarsour, A. Scherrieble, P. Schneider, H. Planck, Bionic developments based on textile materials for technical applications, in Woodhead Publishing Series in Textiles, Biologically Inspired Textiles, ed. by A. M. Ellison (Woodhead Publishing, 2008), pp. 193–211. ISBN 9781845692476

    Google Scholar 

  • J. Tessmar, A. Mikos, A. Gopferich, Amine-reactive biodegradable diblock copolymers. Biomacromolecules 3(2002), 194–200 (2002)

    CAS  Google Scholar 

  • J. Tessmar, A. Mikos, A. Gopferich, The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces. Biomaterials 24, 4475–4486 (2003)

    CAS  Google Scholar 

  • G. Tirlet, H. Crescenzo, D. Crescenzo, P. Bazos, Ceramic adhesive restorations and biomimetic dentistry: Tissue preservation and adhesion. Int. J. Esthet. Dent. 9, 354–369 (2014)

    Google Scholar 

  • J.E. Trancik, J.T. Czernuszka, F.I. Bell, C. Viney, Nanostructural features of a spider dragline silk as revealed by electron and X-ray diffraction studies. Polymer 47, 5633–5642 (2006)

    CAS  Google Scholar 

  • J. Turner, C. Karatzas, Advanced spider silk fibers by biomimicry, in Natural Fibers, Plastics and Composites, ed. by F. T. Wallenberger, N. E. Weston, (Springer, Boston, 2004). https://doi.org/10.1007/978-1-4419-9050-1_2

    Chapter  Google Scholar 

  • E. Vazirinasab, R. Jafari, G. Momen, Applications of superhydrophobic coatings as a corrosion barrier: A review. Surf. Coat. Technol. 341, 40–56 (2018)

    CAS  Google Scholar 

  • S. Velcro, Improvements in or relating to a method and a device for producing a velvet type fabric. Swiss patent. 721338. (1955)

    Google Scholar 

  • J.F.V. Vincent, O.A. Bogatyreva, N.R. Bogatyrev, A. Bowyer, K. PahlA, Biomimetics: Its practice and theory. J. R. Soc. Interface 3, 471–482 (2006)

    Google Scholar 

  • C. Viney, Natural silks: Archetypal supramolecular assembly of polymer fibres. Supramolecular Sci. 4, 75–81 (1997)

    CAS  Google Scholar 

  • Y.C. Wang, S.H. Kao, H.J. Hsieh, A chemical surface modification of chitosan by glycoconjugates to enhance the cell–biomaterial interaction. Biomacromolecules 4, 224–231 (2003)

    CAS  Google Scholar 

  • Y. Wang, S.E. Naleway, B. Wanga, Biological and bioinspired materials: Structure leading to functional and mechanical performance. Bioactive Mater., 745–757 (2020)

    Google Scholar 

  • J. Wang, W. Chen, X. **ao, Y. Xu, C. Li, X. Jia, M.Q.-H. Meng, A survey of the development of biomimetic intelligence and robotics. Biomimetic Intell. Robot. 1, 100001 (2021)., ISSN 2667-3797

    Google Scholar 

  • L. Wen, W. James, V.L. George, Biomimetic shark skin: Design, fabrication and hydrodynamic function. J. Exp. Biol. 217, 1656–1666 (2014)

    Google Scholar 

  • WIPO, Hooked on innovation (2016). Retrieved from: http://www.wipo.int/ipadvantage/en/details.jsp?id=2658

  • Q. Xu, W. Zhang, C. Dong, T.S. Sreeprasad, Z. **a, Biomimetic selfcleaning surfaces: Synthesis, mechanism and applications. J. R. Soc. Interface 13, 20160300 (2016)

    Google Scholar 

  • J.J. Yoon, Y.S. Nam, J.H. Kim, T.G. Park, Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Biotechnol. Bioeng. 78, 1–10 (2002)

    CAS  Google Scholar 

  • M.S. Zafar, F. Amin, M.A. Fareed, H. Ghabbani, S. Riaz, Z. Khurshid, N. Kumar, Biomimetic aspects of restorative dentistry biomaterials. Biomimetics (Basel) 5(3), 34 (2020)

    CAS  Google Scholar 

  • E. Zanon, Codex on flight, Leonardo da Vinci. Milano. Ed. Leonardo 3 srl., Italy (2009)

    Google Scholar 

  • L. Zhang, Z. Zhou, B. Cheng, J.M. Desimone, E.T. Samulski, Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography. Langmuir 22, 8576–8580 (2006)

    CAS  Google Scholar 

  • M. Zheng, M. Pan, W. Zhang, H. Lin, S. Wu, C. Lu, S. Tang, D. Liu, J. Cai, Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioactive Mater. 6, 1878–1909 (2021)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherin Antony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Antony, S., Anju, T.R., Thomas, B. (2023). Nature-Inspired Biomimetic Polymeric Materials and Their Applications. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-19-0710-4_50

Download citation

Publish with us

Policies and ethics

Navigation